zbMATH — the first resource for mathematics

Algebraic quantum hypergroups. (English) Zbl 1206.43004
In the paper under review the authors show that many of the nice aspects of the duality for algebraic quantum groups remain valid if one considers (not necessarily finite dimensional) Hopf-like algebras in which the comultiplication is no longer assumed to be an algebra homomorphism (the existence of a left and a right integral and of a properly defined antipod is still required). Such objects are called algebraic quantum hypergroups. For algebraic quantum hypergroups the authors establish a duality theory much along the same lines as for algebraic quantum groups. Further, the authors define algebraic quantum hypergroups of compact type and discrete type and show that these types are dual to each other. Several examples illustrating different aspects of the theory are given.

43A62 Harmonic analysis on hypergroups
20G42 Quantum groups (quantized function algebras) and their representations
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
Full Text: DOI arXiv
[1] Abe, E., Hopf algebras, (1977), University Press Cambridge
[2] Chapovsky, Y.A.; Vainerman, L.I., Compact quantum hypergroups, J. operator theory, 41, 261-289, (1999) · Zbl 0987.81039
[3] De Commer, K.; Van Daele, A., Multiplier Hopf algebras imbedded in \(\operatorname{C}^\ast\)-algebraic quantum groups, (2006), Rocky Mountain J. Math., in press, doi:10:1216/RMJ-2010-40-4-1, Preprint K.U. Leuven
[4] L. Delvaux, A. Van Daele, Traces on (group-cograded) multiplier Hopf algebras, Preprint University of Hasselt and University of Leuven, 2006. · Zbl 1161.16028
[5] Delvaux, L.; Van Daele, A., Algebraic quantum hypergroups II. constructions and examples, Preprint University of Hasselt and University of Leuven · Zbl 1215.43003
[6] Delvaux, L.; Van Daele, A.; Wang, Shuanhong, A note on Radford’s \(S^4\) formula, (2006), Preprint University of Hasselt, K.U. Leuven and Southeast University Nanjing
[7] L. Delvaux, A. Van Daele, Shuanhong Wang, A note on the antipode for algebraic quantum groups, Canad. Math. Bull., in press, Preprint University of Hasselt, K.U. Leuven and Southeast University Nanjing, 2009. · Zbl 1252.16028
[8] Drabant, B.; Van Daele, A.; Zhang, Y., Actions of multiplier Hopf algebras, Comm. algebra, 27, 4117-4127, (1999) · Zbl 0951.16013
[9] Kalyuzhnyi, A.A., Conditional expectations on quantum groups and new examples of quantum hypergroups, Methods funct. anal. topology, 7, 49-68, (2001) · Zbl 0992.46059
[10] Kustermans, J., The analytic structure of algebraic quantum groups, J. algebra, 259, 415-450, (2003) · Zbl 1034.46064
[11] Kustermans, J.; Vaes, S., A simple definition for locally compact quantum groups, C. R. acad. sci. Paris Sér. I, 328, 10, 871-876, (1999) · Zbl 0957.46037
[12] Kustermans, J.; Vaes, S., Locally compact quantum groups, Ann. sci. éc. norm. supper., 33, 837-934, (2000) · Zbl 1034.46508
[13] Kustermans, J.; Vaes, S., Locally compact quantum groups in the von Neumann algebra setting, Math. scand., 92, 68-92, (2003) · Zbl 1034.46067
[14] Kustermans, J.; Van Daele, A., \(\operatorname{C}^\ast\)-algebraic quantum groups arising from algebraic quantum groups, Int. J. math., 8, 1067-1139, (1997) · Zbl 1009.46038
[15] Lanstad, M.B.; Van Daele, A., Compact and discrete subgroups of algebraic quantum groups I, (2007), Preprint University of Trondheim and University of Leuven
[16] Landstad, M.B.; Van Daele, A., Groups with compact open subgroups and multiplier Hopf *-algebras, Expo. math., 26, 197-217, (2008) · Zbl 1149.22005
[17] Maes, A.; Van Daele, A., Notes on compact quantum groups, Nieuw arch. wiskd. (4), 16, 73-112, (1998) · Zbl 0962.46054
[18] Sweedler, M., Hopf algebras, (1969), Benjamin New York · Zbl 0194.32901
[19] Vainerman, L.I., Gel’fand pair associated with the quantum groups of motions of the plane and q-Bessel functions, Rep. math. phys., 35, 303-326, (1995) · Zbl 0882.16030
[20] Van Daele, A., Multiplier Hopf algebras, Trans. amer. math. soc., 342, 2, 917-932, (1994) · Zbl 0809.16047
[21] Van Daele, A., An algebraic framework for group duality, Adv. math., 140, 323-366, (1998) · Zbl 0933.16043
[22] Van Daele, A., Multiplier Hopf *-algebras with positive integrals: A laboratory for locally compact quantum groups, (), 229-247 · Zbl 1176.22006
[23] Van Daele, A., Locally compact quantum groups, A von Neumann algebra approach, (2006), Preprint K.U. Leuven
[24] Van Daele, A.; Shuanhong, Wang, The larson-sweedler theorem for multiplier Hopf algebras, J. algebra, 296, 75-95, (2006) · Zbl 1162.16029
[25] Woronowicz, S.L., Compact matrix pseudogroups, Comm. math. phys., 111, 613-665, (1987) · Zbl 0627.58034
[26] Woronowicz, S.L., Compact quantum groups. quantum symmetries/symmétries quantiques, (), 845-884 · Zbl 0997.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.