×

zbMATH — the first resource for mathematics

The third order helicity of magnetic fields via link maps. (English) Zbl 1206.57007
An application of the third-order Milnor invariant for magnetic fields in a new ergodic formulation is proposed. A new bound for the energy of magnetic fields is presented.

MSC:
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57R25 Vector fields, frame fields in differential topology
76W05 Magnetohydrodynamics and electrohydrodynamics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akhmetiev P.: On a new integral formula for an invariant of 3-component oriented links. J. Geom. Phys. 53(2), 180–196 (2005) · Zbl 1070.57007
[2] Arnold V.: The asymptotic Hopf invariant and its applications. Selecta Math. Soviet. 5(4), 327–345 (1986) · Zbl 0623.57016
[3] Arnold V., Khesin B.: Topological methods in hydrodynamics. Vol 125 of Applied Mathematical Sciences. Springer-Verlag, New York (1998) · Zbl 0902.76001
[4] Becker M.E.: Multiparameter groups of measure-preserving transformations: a simple proof of Wiener’s ergodic theorem. Ann. Probab. 9(3), 504–509 (1981) · Zbl 0468.28020
[5] Berger M.: Third-order link integrals. J. Phys. A 23(13), 2787–2793 (1990) · Zbl 0711.57008
[6] Bott R., Tu L.: Differential forms in algebraic topology. Volume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York (1982) · Zbl 0496.55001
[7] Cantarella J.: A general mutual helicity formula. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(2003), 2771–2779 (2000) · Zbl 0988.53002
[8] Cantarella J., DeTurck D., Gluck H.: The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics. J. Math. Phys. 42(2), 876–905 (2001) · Zbl 1006.78003
[9] Cantarella J., DeTurck D., Gluck D., Teytel M.: Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators. J. Math. Phys. 41(8), 5615–5641 (2000) · Zbl 1054.78500
[10] Cantarella, J., Parsley, J.: A new cohomological formula for helicity in R 2k+1 reveals the effect of a diffeomorphism on helicity. http://arxiv.org/abs/0903.1465v1[math,GT] , 2009 · Zbl 1206.57033
[11] Chavel, I.: Eigenvalues in Riemannian geometry. Includes a chapter by Burton Randol. With an appendix by Jozef Dodziuk, Volume 115 of Pure and Applied Mathematics. Orlando, FL: Academic Press Inc., 1984 · Zbl 0551.53001
[12] DeTurck, D., Gluck, H., Komendarczyk, R., Melvin, P., Shonkwiler, C., Vela-Vick, D.: Triple linking numbers, Hopf invariants and Integral formulas for three-component links. http://arxiv.org/abs/0901.1612v1[math,GT] , 2009 · Zbl 1194.57007
[13] Evans, N.W., Berger, M.A.: A hierarchy of linking integrals. In: Topological aspects of the dynamics of fluids and plasmas (Santa Barbara, CA, 1991), Volume 218 of NATO Adv. Sci. Inst. Ser. E Appl. Sci., Dordrecht: Kluwer Acad. Publ., 1992, pp. 237–248 · Zbl 0799.57004
[14] Freedman, M.: Zeldovich’s neutron star and the prediction of magnetic froth. In: The Arnoldfest (Toronto, ON, 1997), Volume 24 of Fields Inst. Commun., Providence, RI: Amer. Math. Soc., 1999, pp. 165–172 · Zbl 0973.76097
[15] Freedman M., He Z.: Divergence-free fields: energy and asymptotic crossing number. Ann. of Math. (2) 134(1), 189–229 (1991) · Zbl 0746.57011
[16] Gambaudo J.-M., Ghys É.: Enlacements asymptotiques. Topology 36(6), 1355–1379 (1997) · Zbl 0913.58003
[17] Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[18] Khesin B.: Ergodic interpretation of integral hydrodynamic invariants. J. Geom. Phys. 9(1), 101–110 (1992) · Zbl 0742.57020
[19] Khesin B.: Topological fluid dynamics. Notices Amer. Math. Soc. 52(1), 9–19 (2005) · Zbl 1078.37048
[20] Kohno, T.: Loop spaces of configuration spaces and finite type invariants. In: of knots and 3-manifolds (Kyoto, 2001), Volume 4 of Geom. Topol. Monogr. Coventry: Geom. Topol. Publ., 2002, pp. 143–160 (electronic) · Zbl 1043.57004
[21] Koschorke U.: A generalization of Milnor’s {\(\mu\)}-invariants to higher-dimensional link maps. Topology 36(2), 301–324 (1997) · Zbl 0876.57038
[22] Koschorke U.: Link homotopy in \({S^ n\times \mathbb R^ {m-n}}\) and higher order {\(\mu\)}-invariants. J. Knot Theory Ramifications 13(7), 917–938 (2004) · Zbl 1081.57022
[23] Kotschick D., Vogel T.: Linking numbers of measured foliations. Ergodic Theory Dynam. Systems 23(2), 541–558 (2003) · Zbl 1043.37019
[24] Laurence P., Avellaneda M.: A Moffatt-Arnold formula for the mutual helicity of linked flux tubes. Geophys. Astrophys. Fluid Dynam. 69(1–4), 243–256 (1993)
[25] Laurence P., Stredulinsky E.: Asymptotic Massey products, induced currents and Borromean torus links. J. Math. Phys. 41(5), 3170–3191 (2000) · Zbl 0971.57019
[26] Laurence P., Stredulinsky E.: A lower bound for the energy of magnetic fields supported in linked tori. C. R. Acad. Sci. Paris Sér. I Math. 331(3), 201–206 (2000) · Zbl 0991.76096
[27] Mayer, C.: Topological link invariants of magnetic fields. Ph.D. thesis, 2003
[28] Milnor J.: Link groups. Ann. of Math. (2) 59, 177–195 (1954) · Zbl 0055.16901
[29] Milnor, J.: Isotopy of links. In: R. Fox, editor, Algebraic Geometry and Topology, Princeton, NJ: Princeton University Press, 1957, pp. 280–306 · Zbl 0080.16901
[30] Milnor, J.: Topology from the Differentiable Viewpoint. Chapter 7 in Princeton Landmarks in Mathematics and Physics. Princeton, NJ: Princeton University Press, 1997 (Revised reprint of 1965 original) · Zbl 1025.57002
[31] Mitrea, D., Mitrea, M., Taylor, M.: Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds. Mem. Amer. Math. Soc. 150, no. 713, Providence, RI: Amer. Math. Soc., 2001 · Zbl 1003.35001
[32] Priest E.: Solar Magnetohydrodynamics. D. Rediel Publishing Comp., Dordrecit (1984)
[33] Rivière T.: High-dimensional helicities and rigidity of linked foliations. Asian J. Math. 6(3), 505–533 (2002) · Zbl 1045.57017
[34] Schwarz, G.: Hodge decomposition–a method for solving boundary value problems. Vol. 1607 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1995 · Zbl 0828.58002
[35] Spera M.: A survey on the differential and symplectic geometry of linking numbers. Milan J. Math. 74, 139–197 (2006) · Zbl 1165.58004
[36] Bodecker H.v., Hornig G.: Link invariants of electromagnetic fields. Phys. Rev. Lett. 92(3), 030406 (2004) 4 · Zbl 1267.78004
[37] Verjovsky A., Vila Freyer R.F.: The Jones-Witten invariant for flows on a 3-dimensional manifold. Commun. Math. Phys. 163(1), 73–88 (1994) · Zbl 0808.57011
[38] Vogel T.: On the asymptotic linking number. Proc. Amer. Math. Soc. 131(7), 2289–2297 (2003) (electronic) · Zbl 1015.57018
[39] Woltjer L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. U.S.A. 44, 489–491 (1958) · Zbl 0081.21703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.