×

zbMATH — the first resource for mathematics

Aggregation functions: means. (English) Zbl 1206.68298
Summary: This two-part state-of-the-art overview of aggregation theory summarizes the essential information concerning aggregation issues. An overview of aggregation properties is given, including the basic classification of aggregation functions. In this first part, the stress is put on means, i.e., averaging aggregation functions, both with fixed arity (\(n\)-ary means) and with multiple arities (extended means).

MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
28E10 Fuzzy measure theory
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aczél, J., On Mean values, Bull. amer. math. soc., 54, 392-400, (1948) · Zbl 0030.02702
[2] Aczél, J., Lectures on functional equations and their applications, Mathematics in science and engineering, vol. 19, (1966), Academic Press New York, Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser · Zbl 0139.09301
[3] Aczél, J.; Dhombres, J., Functional equations in several variables, Encyclopedia of mathematics and its applications, vol. 31, (1989), Cambridge University Press Cambridge, With applications to mathematics, information theory and to the natural and social sciences · Zbl 0685.39006
[4] Aczél, J.; Kuczma, M., On two Mean value properties and functional equations associated with them, Aequationes math., 38, 2-3, 216-235, (1989) · Zbl 0688.39006
[5] Antoine, C., LES moyennes, Que sais-je? [what do I know?], vol. 3383, (1998), Presses Universitaires de France Paris
[6] Bajraktarević, M., Sur une équation fonctionnelle aux valeurs moyennes, Glasnik mat.-fiz. astronom. društvo mat. fiz. hrvatske. ser. II, 13, 243-248, (1958) · Zbl 0084.34401
[7] Beliakov, G.; Pradera, A.; Calvo, T., Aggregation functions: a guide for practitioners, Studies in fuziness and soft computing, (2007), Springer Berlin · Zbl 1123.68124
[8] Bemporad, G., Sul principio Della media aritmetica. (Italian), Atti acad. naz. lincei, 3, 6, 87-91, (1926) · JFM 52.0079.03
[9] Berrone, L.R., Decreasing sequences of means appearing from non-decreasing functions, Publ. math. debrecen, 55, 1-2, 53-72, (1999) · Zbl 0934.26015
[10] Berrone, L.R.; Moro, J., Lagrangian means, Aequationes math., 55, 3, 217-226, (1998) · Zbl 0903.39006
[11] Berrone, L.R.; Moro, J., On means generated through the Cauchy Mean value theorem, Aequationes math., 60, 1-2, 1-14, (2000) · Zbl 0965.39019
[12] Bhatia, R., Positive definite matrices, Princeton series in applied mathematics, (2007), Princeton University Press Princeton, NJ
[13] Bullen, P.S., Handbook of means and their inequalities, Mathematics and its applications, vol. 560, (2003), Kluwer Academic Publishers. Group Dordrecht · Zbl 1035.26024
[14] Bullen, P.S.; Mitrinović, D.S.; Vasić, P.M., Means and their inequalities, Mathematics and its applications (east European series), vol. 31, (1988), D. Reidel Publishing Co. Dordrecht, Translated and revised from the Serbo-Croatian · Zbl 0687.26005
[15] Calvo, T.; Kolesárová, A.; Komornı´ková, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (), 3-104 · Zbl 1039.03015
[16] Calvo, T.; Mesiar, R.; Yager, R.R., Quantitative weights and aggregation, IEEE trans. fuzzy syst., 12, 1, 62-69, (2004)
[17] A.L. Cauchy, Cours d’analyse de l’Ecole Royale Polytechnique, vol. I, Analyse algébrique. Debure, Paris, 1821. · Zbl 0806.01030
[18] Chen, C.-P.; Qi, F., A new proof for monotonicity of the generalized weighted Mean values, Adv. stud. contemp. math. (kyungshang), 6, 1, 13-16, (2003) · Zbl 1040.26014
[19] Chen, C.-P.; Qi, F., New proofs of monotonicities of generalized weighted Mean values, Tamkang J. math., 35, 4, 301-304, (2004) · Zbl 1092.26012
[20] Chisini, O., Sul concetto di media. (Italian), Periodico di matematiche, 9, 4, 106-116, (1929) · JFM 55.0918.01
[21] Choquet, G., Theory of capacities, Ann. inst. Fourier, Grenoble, 5, 131-295, (1955), 1953-1954 · Zbl 0064.35101
[22] Czogała, E.; Drewniak, J., Associative monotonic operations in fuzzy set theory, Fuzzy sets and systems, 12, 3, 249-269, (1984) · Zbl 0555.94027
[23] David, H.A.; Nagaraja, H.N., Order statistics, Wiley series in probability and statistics, (2003), Wiley-Interscience [John Wiley & Sons] Hoboken, NJ
[24] de Campos, L.M.; Bolaños, M.J., Characterization and comparison of sugeno and Choquet integrals, Fuzzy sets and systems, 52, 1, 61-67, (1992) · Zbl 0782.28011
[25] de Finetti, B., Sul concetto di media. (Italian), Giorn. ist. ital. attuari, 2, 3, 369-396, (1931) · JFM 57.0609.01
[26] Dubois, D.; Prade, H., Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory, (), 209-240
[27] Durante, F.; Saminger-Platz, S.; Sarkoci, P., On representations of 2-increasing binary aggregation functions, Inform. sci., 178, 23, 4534-4541, (2008) · Zbl 1163.68340
[28] A.G. Emrouznejad, A. Improving minimax disparity model to determine the OWA operator weights. Information Sciences, in Press. · Zbl 1183.91032
[29] Fodor, J.C., An extension of fung – fu’s theorem, Int. J. uncertain. fuzziness knowledge-based systems, 4, 3, 235-243, (1996) · Zbl 1232.91130
[30] Fodor, J.C.; Marichal, J.-L.; Roubens, M., Characterization of some aggregation functions arising from MCDM problems, (), 194-201 · Zbl 1028.90526
[31] Fodor, J.C.; Roubens, M., Fuzzy preference modelling and multicriteria decision support, (1994), Kluwer Dordrecht · Zbl 0827.90002
[32] V. Frosini. Averages. In Italian Contributions to the Methodology of Statistics, pages 1-17. Cleup, Padova, 1987.
[33] Fung, L.W.; Fu, K.S., An axiomatic approach to rational decision making in a fuzzy environment, (), 227-256 · Zbl 0366.90003
[34] Głazowska, D.; Matkowski, J., An invariance of geometric mean with respect to Lagrangian means, J. math. anal. appl., 331, 2, 1187-1199, (2007) · Zbl 1119.26029
[35] Gottwald, S., A treatise on many-valued logics, Studies in logic and computation, vol. 9, (2001), Research Studies Press Ltd. Baldock · Zbl 1048.03002
[36] Grabisch, M., K-order additive discrete fuzzy measures and their representation, Fuzzy sets and systems, 92, 2, 167-189, (1997) · Zbl 0927.28014
[37] Grabisch, M., The interaction and Möbius representations of fuzzy measures on finite spaces, k-additive measures: a survey, (), 70-93 · Zbl 0957.28011
[38] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E., Aggregation functions, Encyclopedia of mathematics and its applications, vol. 127, (2009), Cambridge University Press
[39] Grabisch, M.; Marichal, J.-L.; Roubens, M., Equivalent representations of set functions, Mathematics of operations research, 25, 2, 157-178, (2000) · Zbl 0982.91009
[40] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Academic Publishers. Dordrecht · Zbl 0937.03030
[41] Hidders, M.S.P.J.V.R., J. on the expressibility of functions in xquery fragments, Inform. syst., 33, 4-5, 435-455, (2008)
[42] Horwitz, A., Means and divided differences, J. math. anal. appl., 191, 3, 618-632, (1995) · Zbl 0824.39006
[43] Horwitz, A., Invariant means, J. math. anal. appl., 270, 2, 499-518, (2002) · Zbl 1004.26020
[44] H. Imaoka. A proposal of opposite-Sugeno integral and a uniform expression of fuzzy integrals. In Int. Joint Conf. 4th IEEE Int. Conf. on Fuzzy Systems and 2nd Int. Fuzzy Engineering Symp., pages 583-590, Yokohama, March 1995.
[45] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, Trends in logic – studia logica library, vol. 8, (2000), Kluwer Academic Publishers. Dordrecht · Zbl 0972.03002
[46] Klement, E.P.; Mesiar, R.; Pap, E., Measure-based aggregation operators, Fuzzy sets and systems, 142, 1, 3-14, (2004), Aggregation techniques · Zbl 1046.28011
[47] Kolesárová, A.; Komornı´ková, M., Triangular norm-based iterative compensatory operators, Fuzzy sets and systems, 104, 1, 109-120, (1999) · Zbl 0931.68123
[48] Kolesárová, A.; Mesiar, R., Weighted ordinal means, Inform. sci., 177, 18, 3822-3830, (2007) · Zbl 1124.03028
[49] Kolmogoroff, A.N., Sur la notion de la moyenne. (French), Atti acad. naz. lincei, 12, 6, 388-391, (1930) · JFM 56.0198.02
[50] Kuczma, M., On the quasiarithmetic mean in a Mean value property and the associated functional equation, Aequationes math., 41, 1, 33-54, (1991) · Zbl 0726.39003
[51] Lipschitz, R., De explicatione per series trigonometricas instuenda functionum unius variables arbitrariarum et praecipue earum, quae per variablis spatium finitum valorum maximorum et minimorum numerum habent infintum disquisitio, J. reine angew. math., 63, 296-308, (1864)
[52] Lorenzen, G., Why means in two arguments are special, Elem. math., 49, 1, 32-37, (1994) · Zbl 0860.26014
[53] Losonczi, L., Über eine neue klasse von mittelwerten, Acta sci. math. (Szeged), 32, 71-81, (1971) · Zbl 0217.37503
[54] Losonczi, L., General inequalities for nonsymmetric means, Aequationes math., 9, 221-235, (1973) · Zbl 0266.26018
[55] Losonczi, L., Homogeneous Cauchy Mean values, () · Zbl 0996.39018
[56] Losonczi, L., Equality of two variable means revisited, Aequationes math., 71, 3, 228-245, (2006) · Zbl 1095.39019
[57] Marichal, J.-L., On sugeno integral as an aggregation function, Fuzzy sets and systems, 114, 3, 347-365, (2000) · Zbl 0971.28010
[58] Marichal, J.-L., On the associativity functional equation, Fuzzy sets and systems, 114, 3, 381-389, (2000) · Zbl 0962.39012
[59] J.-L. Marichal, Weighted lattice polynomials. Discrete Mathematics, to appear.
[60] Marichal, J.-L.; Mathonet, P., A characterization of the ordered weighted averaging functions based on the ordered bisymmetry property, IEEE trans. fuzzy syst., 7, 1, 93-96, (1999)
[61] Marichal, J.-L.; Mathonet, P.; Tousset, E., Characterization of some aggregation functions stable for positive linear transformations, Fuzzy sets and systems, 102, 2, 293-314, (1999) · Zbl 0952.91020
[62] J.-L. Marichal and M. Roubens, Characterization of some stable aggregation functions. In Proc. 1st Int. Conf. on Industrial Engineering and Production Management (IEPM’93), pages 187-196, Mons, Belgium, June 1993.
[63] Marques Pereira, R.A.; Ribeiro, R.A., Aggregation with generalized mixture operators using weighting functions, Fuzzy sets and systems, 137, 1, 43-58, (2003), Preference modelling and applications (Granada, 2001) · Zbl 1041.91024
[64] Matkowski, J., Mean value property and associated functional equations, Aequationes math., 58, 1-2, 46-59, (1999), Dedicated to János Aczél on the occasion of his 75th birthday · Zbl 0931.39013
[65] Matkowski, J., On invariant generalized beckenbach – gini means, (), 219-230 · Zbl 0996.39019
[66] Mayor, G.; Valero, O., Aggregation of asymmetric distances in computer science, Inform. sci., 180, 6, 803-812, (2010) · Zbl 1189.68129
[67] Mesiar, R.; Pap, E., Aggregation of infinite sequences, Inform. sci., 178, 18, 3557-3564, (2008) · Zbl 1142.40300
[68] Mesiar, R.; Špirková, J., Weighted means and weighting functions, Kybernetika (Prague), 42, 2, 151-160, (2006) · Zbl 1249.91022
[69] R. Mesiar and J. Špirková, Weighted aggregation operators based on minimization. In Proc. Int. Summer School on Aggregation Operators and their Applications (AGOP’2007), pages 203-206, Ghent, Belgium, July 2007.
[70] Mesiar, R.; Špirková, J.; Vavríková, L., Weighted aggregation operators based on minimization, Inform. sci., 178, 4, 1133-1140, (2008) · Zbl 1135.68572
[71] Nagumo, M., Über eine klasse der mittelwerte. (German), Jpn. J. math., 7, 71-79, (1930) · JFM 56.0198.03
[72] Y. Narukawa and T. Murofushi. The n-step Choquet integral on finite spaces. In Proc. of the 9th Int. Conf. on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, pages 539-543, Annecy, France, July 2002.
[73] Ovchinnikov, S., Max – min representation of piecewise linear functions, Beiträge algebra geom., 43, 1, 297-302, (2002) · Zbl 0996.26007
[74] Páles, Z., On the characterization of quasi-arithmetic means with weight function, Aequationes math., 32, 2-3, 171-194, (1987) · Zbl 0618.39006
[75] Qi, F., Generalized weighted Mean values with two parameters, R. soc. lond. proc. ser. A math. phys. eng. sci., 454, 1978, 2723-2732, (1998) · Zbl 0935.26014
[76] Qi, F.; Mei, J.-Q.; Xia, D.-F.; Xu, S.-L., New proofs of weighted power mean inequalities and monotonicity for generalized weighted Mean values, Math. inequal. appl., 3, 3, 377-383, (2000) · Zbl 0965.26015
[77] Qi, F.; Zhang, S.-Q., Note on monotonicity of generalized weighted Mean values, R. soc. lond. proc. ser. A math. phys. eng. sci., 455, 1989, 3259-3260, (1999) · Zbl 0942.26030
[78] Rotman, J.J., An introduction to the theory of groups, Graduate texts in mathematics, vol. 148, (1995), Springer-Verlag New York
[79] Sahoo, P.K.; Riedel, T., Mean value theorems and functional equations, (1998), World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 0980.39015
[80] Sándor, J., On the identric and logarithmic means, Aequationes math., 40, 2-3, 261-270, (1990) · Zbl 0717.26014
[81] Schmeidler, D., Integral representation without additivity, Proc. amer. math. soc., 97, 2, 255-261, (1986) · Zbl 0687.28008
[82] Soublin, J.-P., Étude algébrique de la notion de moyenne, J. math. pures appl., 50, 9, 53-264, (1971) · Zbl 0186.03301
[83] Stolarsky, K.B., Generalizations of the logarithmic Mean, Math. mag., 48, 87-92, (1975) · Zbl 0302.26003
[84] Sugeno, M., Fuzzy measures and fuzzy integrals, Trans. S.I.C.E. (keisoku jidōseigyō gakkai), 8, 2, 218-226, (1972), In Japanese
[85] M. Sugeno, Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974.
[86] Torra, V.; Narukawa, Y., Modeling decisions: information fusion and aggregation operators, Cognitive technologies, (2007), Springer
[87] Truck, A.H., I. A tool for aggregation with words, Inform. sci., 179, 14, 2317-2324, (2009) · Zbl 1192.68542
[88] Weber, S., ⊥-decomposable measures and integrals for Archimedean t-conorms ⊥, J. math. anal. appl., 101, 1, 114-138, (1984) · Zbl 0614.28019
[89] Weisberg, H., The distribution of linear combinations of order statistics from the uniform distributions, Ann. math. stat., 42, 704-709, (1971) · Zbl 0226.62046
[90] Wimp, J., Quadrature with generalized means, Amer. math. mon., 93, 6, 466-468, (1986) · Zbl 0611.65011
[91] Witkowski, A., Monotonicity of generalized weighted Mean values, Colloq. math., 99, 2, 203-206, (2004) · Zbl 1051.26021
[92] Xu, Z., Choquet integrals of weighted intuitionistic fuzzy information, Inform. sci., 180, 5, 726-736, (2010) · Zbl 1186.68469
[93] Yager, R., On the dispersion measure of Owa operators, Inform. sci., 179, 22, 3908-3919, (2009) · Zbl 1183.68622
[94] (), Theory and Applications
[95] Yager, R.R., On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE trans. syst. man cybernet., 18, 1, 183-190, (1988) · Zbl 0637.90057
[96] Yager, R.R., The power average operator, IEEE trans. syst. man cybernet., 31, 6, 724-731, (2001)
[97] Zadeh, L., Toward a generalized theory of uncertainty (GTU); an outline, Inform. sci., 172, 1-40, (2005) · Zbl 1074.94021
[98] Zadeh, L., Is there a need for fuzzy logic?, Inform. sci. int. J. arch., 178, 13, 2751-2779, (2008) · Zbl 1148.68047
[99] Zygmund, A., (), Reprint of the 1979 edition
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.