×

DC models for spherical separation. (English) Zbl 1206.90120

Summary: We propose two different approaches for the spherical separation of two sets. Both methods are based on minimizing appropriate nonconvex nondifferentiable error functions, which can be both expressed in a DC (difference of two convex) form. We tackle the problem by adopting the DC-algorithm. Some numerical results on classical binary datasets are reported.

MSC:

90C26 Nonconvex programming, global optimization

Keywords:

DC functions; DCA

Software:

UCI-ml
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] An L.T.H., Tao P.D.: The DC (Difference of Convex Functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005) · Zbl 1116.90122
[2] Astorino A., Gaudioso M.: Polyhedral separability through successive LP. J. Optim. Theory Appl. 112, 265–293 (2002) · Zbl 1049.90039
[3] Astorino A., Gaudioso M.: Ellipsoidal separation for classification problems. Optim. Methods Softw. 20, 261–270 (2005) · Zbl 1072.90027
[4] Astorino A., Gaudioso M.: A fixed-center spherical separation algorithm with kernel transformations for classification problems. Computat. Manage. Sci. 6, 357–372 (2009) · Zbl 1170.90530
[5] Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: Proceedings of the tenth international workshop on artificial intelligence and statistics, pp. 57–64. (2005)
[6] Cristianini N., Shawe-Taylor J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000) · Zbl 0994.68074
[7] Fuduli A., Gaudioso M., Giallombardo G.: Minimizing nonconvex nonsmooth functions via cutting planes and proximity control. SIAM J. Optim. 14, 743–756 (2004) · Zbl 1079.90105
[8] Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. in Proceedings KDD-2001, pp. 77–86. San Francisco (2001) · Zbl 1101.68758
[9] Mangasarian O.: Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13, 444–452 (1965) · Zbl 0127.36701
[10] Mangasarian O.L., Musicant D.R.: Lagrangian support vector machines. J. Mach. Learn. Res. 1, 161–177 (2001) · Zbl 0997.68108
[11] Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases. In http://www.ics.uci.edu/\(\sim\)mlearn/MLRepository.html (1992)
[12] Rosen J.B.: Pattern separation by convex programming. J. Math. Anal. Appl. 10, 123–134 (1965) · Zbl 0134.37503
[13] Odewahn S., Stockwell E., Pennington R., Humphreys R., Zumach W.: Automated star/galaxy discrimination with neural networks. Astron. J. 103, 318–331 (1992)
[14] Schölkopf B., Smola A.J.: Learning with kernels. MIT Press, Cambridge (2002) · Zbl 1019.68094
[15] Schölkopf B., Burges C.J.C., Smola A.J.: Advances in kernel methods. Support vector learning. MIT Press, Cambridge (1999) · Zbl 0935.68084
[16] Shawe-Taylor J., Cristianini N.: Kernel methods for pattern analysis. Cambridge University Press, Cambridge (2004) · Zbl 0994.68074
[17] Tao P.D., An L.T.H.: A D.C. optimization algorithm for solving the trust-region subproblem. SIAM J. Con. Opt. 8, 476–505 (1998) · Zbl 0913.65054
[18] Tax, D.M.J., Duin, R.P.W.: Data domain description using support vectors. In: ESANN’1999 proceedings Bruges, pp. 251–256. Belgium (1999)
[19] Tax D.M.J., Duin R.P.W.: Uniform object generation for optimizing one-class classifiers. J. Mach. Learn. Res. 2, 155–173 (2001) · Zbl 1002.68599
[20] Vapnik V.: The nature of the statistical learning theory. Springer, New York (1995) · Zbl 0833.62008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.