Convergence and sharp thresholds for propagation in nonlinear diffusion problems. (English) Zbl 1207.35061

Authors’ abstract: We study the Cauchy problem
\[ u_t= u_{xx}+ f(u), \qquad u(0, x) = u_{0}(x), \]
where \(f(u)\) is a locally Lipschitz continuous function satisfying \(f(0) = 0\). We show that any nonnegative bounded solution with compactly supported initial data converges to a stationary solution as \(t\rightarrow \infty \). Moreover, the limit is either a constant or a symmetrically decreasing stationary solution. We also consider the special case where \(f\) is a bistable nonlinearity and the case where \(f\) is a combustion type nonlinearity. Examining the behavior of a parameter-dependent solution \(u_\lambda\), we show the existence of a sharp threshold between extinction (i.e., convergence to 0) and propagation (i.e., convergence to 1). The result holds even if \(f\) has a jumping discontinuity at \(u=1\).


35B40 Asymptotic behavior of solutions to PDEs
35K15 Initial value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
80A25 Combustion
Full Text: DOI Link


[1] Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its applica- tion to antiphase domain coarsening. Acta Metallica 27, 1084-1095 (1979)
[2] Angenent, S. B.: The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390, 79-96 (1988) · Zbl 0644.35050
[3] Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, com- bustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics, Lecture Notes in Math. 446, Springer, Berlin, 5-49 (1975) · Zbl 0325.35050
[4] Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in pop- ulation genetics. Adv. Math. 30, 33-76 (1978) · Zbl 0407.92014
[5] Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 497-573 (1992) · Zbl 0799.35073
[6] Brezis, H., Kamin, S., Sivashinsky, G.: Initiation of subsonic detonation. Asymptotic Anal. 24, 73-90 (2000) · Zbl 0989.35029
[7] Busca, J., Jendoubi, M. A., Polá\check cik, P.: Convergence to equilibrium for semilinear parabolic problems in N R . Comm. Partial Differential Equations 27, 1793-1814 (2002) · Zbl 1021.35013
[8] Chen, X.-Y.: Uniqueness of the \omega limit point of solutions of a semilinear heat equation on the circle. Proc. Japan Acad. Ser. A 62, 335-337 (1986) · Zbl 0641.35028
[9] Chen, X.-Y., Matano, H.: Convergence, asymptotic periodicity, and finite-point blow- up in one-dimensional semilinear heat equations. J. Differential Equations 78, 160-190 (1989) · Zbl 0692.35013
[10] Feireisl, E., Polá\check cik, P.: Structure of periodic solutions and asymptotic behavior for time- periodic reaction-diffusion equations on R. Adv. Differential Equations 5, 583-622 (2000) · Zbl 0987.35079
[11] Fife, P. C., McLeod, J. B.: The approach of solutions of nonlinear diffusion equa- tions to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335-361 (1977) · Zbl 0361.35035
[12] Fisher, R. A.: The advance of advantageous genes. Ann. of Eugenics 7, 355-369 (1937) JFM 63.1111.04 · JFM 63.1111.04
[13] Jones, C. K. R. T.: Spherically symmetric solutions of a reaction-diffusion equation. J. Differential Equations 49, 142-169 (1983) · Zbl 0523.35059
[14] Kanel’, Ya. I.: Stabilization of the solutions of the equations of combustion theory with finite initial functions. Mat. Sb. (N.S.) 65 (107), 398-413 (1964) (in Russian)
[15] Kolmogorov, A. N., Petrovski\?ı, I. G., Piskunov, N. S.: A study of the equation of diffusion with increase in the quantity of matter, and its applications to a biological problem. Bull. Moskov. Gos. Univ. Mat. Mekh. 1, 1-25 (1937)
[16] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc. (1968) · Zbl 0174.15403
[17] Lieberman, G..: Second Order Parabolic Differential Equations, World Sci., Singapore (1996) · Zbl 0884.35001
[18] Matano, H.: Convergence of solutions of one-dimensional semilinear parabolic equa- tions. J. Math. Kyoto Univ. 18, 221-227 (1978) · Zbl 0387.35008
[19] Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Engrg. 50, 2061-2070 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.