×

New perturbed finite step iterative algorithms for a system of extended generalized nonlinear mixed quasi-variational inclusions. (English) Zbl 1207.65088

Summary: This paper introduces a new system of extended generalized nonlinear mixed quasi-variational inclusions involving \(A\)-maximal \(m\)-relaxed \(\eta \)-accretive (so called \((A,\eta )\)-accretive; [H.-Y. Lan et al., Comput. Math. Appl. 51, No. 9-10, 1529–1538 (2006; Zbl 1207.49011)]) mappings in \(q\)-uniformly smooth Banach spaces. By using the resolvent operator technique for \(A\)-maximal \(m\)-relaxed \(\eta \)-accretive mappings due to Lan et al., we establish the existence and uniqueness of solution for this system of extended generalized nonlinear mixed quasi-variational inclusions and construct a new perturbed \(N\)-step iterative algorithm with mixed errors for solving the mentioned system. We also prove the convergence of the sequences generated by our algorithms in \(q\)-uniformly smooth Banach spaces. The results presented in this paper extend and improve some known results in the literature.

MSC:

65K15 Numerical methods for variational inequalities and related problems
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47J25 Iterative procedures involving nonlinear operators
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)

Citations:

Zbl 1207.49011
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Stampacchia, G., Formes bilineaires sur LES ensemble convexes, C. R. acad. sci. Paris., 285, 4413-4416, (1964) · Zbl 0124.06401
[2] Hassouni, A.; Moudafi, A., A perturbed algorithm for variational inclusions, J. math. anal. appl., 185, 706-712, (1994) · Zbl 0809.49008
[3] Adly, S., Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. math. anal. appl., 201, 609-630, (1996) · Zbl 0856.65077
[4] Baiocchi, C.; Capelo, A., Variational and quasi-variational inequalities, applications to free boundary problems, (1984), John Wiley and Sons New York · Zbl 1308.49003
[5] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag Berlin · Zbl 0559.47040
[6] Ding, X.P., Perturbed proximal point for generalized quasi-variational inclusions, J. math. anal. appl., 210, 88-101, (1997) · Zbl 0902.49010
[7] Pang, J.S., Asymmetric variational inequality problems over product sets: applications and iterative methods, Math. program., 31, 206-219, (1985) · Zbl 0578.49006
[8] Cohen, G.; Chaplais, F., Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. optim. theory appl., 59, 360-390, (1988) · Zbl 0628.90069
[9] M. Bianchi, Pseudo \(P\)-monotone operators and variational inequalities, Report 6, Istituto di econometria e Matematica per le desisioni economiche, Universita Cattolica del sacro Cuore, Milan, Italy, 1993.
[10] Ansari, Q.H.; Yao, J.C., A fixed point theorem and its applications to a system of variational inequalities, Bull. aust. math. soc., 59, 433-442, (1999) · Zbl 0944.47037
[11] Ansari, Q.H.; Shaible, S.; Yao, J.C., Systems of vector equilibrium problems and its applications, J. optim. theory appl., 107, 547-557, (2000) · Zbl 0972.49009
[12] Allevi, E.; Gnudi, A.; Konnov, I.V., Generalized vector variational inequalities over product sets, Nonlinear anal., 47, 573-582, (2001) · Zbl 1042.49509
[13] Kassay, G.; Kolumban, J., System of multi-valued variational inequalities, Publ. math. debrecen, 54, 267-279, (1999)
[14] Kassay, G.; Kolumban, J.; Pales, Z., Factorization of minty and Stampacchia variational inequality system, European J. oper. res., 143, 377-389, (2002) · Zbl 1059.49015
[15] Peng, J.W., System of generalized set-valued quasi-variational-like inequalities, Bull. aust. math. soc., 68, 501-515, (2003) · Zbl 1063.47060
[16] Peng, J.W., Set-valued variational inclusions with \(T\)-accretive, Appl. math. lett., 19, 273-282, (2006) · Zbl 1102.47050
[17] Peng, J.W.; Yang, X.M., On existence of a solution for the system of generalized vector quasi-equilibrium problems with upper semicontinuous set-valued maps, Internat. J. math. math. sci., 15, 2409-2420, (2005) · Zbl 1106.49031
[18] Verma, R.U., On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. sci. res. hot-line, 3, 8, 65-68, (1999) · Zbl 0970.49011
[19] Verma, R.U., Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. math. appl., 41, 1025-1031, (2001) · Zbl 0995.47042
[20] Verma, R.U., Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. nonlinear var. inequal., 4, 1, 117-124, (2001) · Zbl 1014.47050
[21] Verma, R.U., Generalized system for relaxed cocoercive variational inequalities and projection methods, J. optim. theory appl., 121, 1, 203-210, (2004) · Zbl 1056.49017
[22] Verma, R.U., General convergence analysis for two-step projection methods and application to variational problems, Appl. math. lett., 18, 1286-1292, (2005) · Zbl 1099.47054
[23] Kim, J.K.; Kim, D.S., A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. convex anal., 11, 1, 235-243, (2004) · Zbl 1061.49010
[24] Cho, Y.J.; Fang, Y.P.; Huang, N.J.; Hwang, H.J., Algorithms for systems of nonlinear variational inequalities, J. Korean math. soc., 41, 489-499, (2004) · Zbl 1057.49010
[25] Agarwal, R.P.; Huang, N.J.; Tan, M.Y., Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. math. lett., 17, 345-352, (2004) · Zbl 1056.49008
[26] Kazmi, K.R.; Bhat, M.I., Iterative algorithm for a system of nonlinear variational-like inclusions, Comput. math. appl., 48, 1929-1935, (2004) · Zbl 1059.49016
[27] Huang, N.J.; Fang, Y.P., Generalized \(m\)-accretive mappings in Banach spaces, J. sichuan univ., 38, 4, 591-592, (2001) · Zbl 1020.47037
[28] Fang, Y.P.; Huang, N.J., \(H\)-monotone operators and system of variational inclusions, Comm. appl. nonlinear anal., 11, 1, 93-101, (2004) · Zbl 1040.49007
[29] Yan, W.Y.; Fang, Y.P.; Huang, N.J., A new system of set-valued variational inclusions with \(H\)-monotone operators, Math. inequal. appl., 8, 3, 537-546, (2005) · Zbl 1070.49007
[30] Fang, Y.P.; Huang, N.J.; Thompson, H.B., A new system of variational inclusions with \((H, \eta)\)-monotone operators in Hilbert spaces, Comput. math. appl., 49, 2-3, 365-374, (2005) · Zbl 1068.49003
[31] Lan, H.Y.; Huang, N.J.; Cho, Y.J., New iterative approximation for a system of generalized nonlinear variational inclusions with set-valued mappings in Banach spaces, Math. inequal. appl., 9, 1, 175-187, (2006) · Zbl 1119.49009
[32] Lan, H.Y.; Liu, Q.K.; Li, J., Iterative approximation for a system of nonlinear variational inclusions involving generalized \(m\)-accretive mappings, Nonlinear anal. forum, 9, 1, 33-42, (2004) · Zbl 1064.49006
[33] Fang, Y.P.; Huang, N.J., Iterative algorithm for a system of variational inclusions involving \(H\)-accretive operators in Banach spaces, Acta math. hungar., 108, 3, 183-195, (2005) · Zbl 1094.49007
[34] Peng, J.W.; Zhu, D.L.; Zheng, X.P., Existence of solutions and convergence of a multistep iterative algorithm for a system of variational inclusions with \((H, \eta)\)-accretive operators, Fixed point theory appl., 2007, (2007), Art. ID 93678, 20 pp
[35] Verma, R.U., A-monotonicity and applications to nonlinear variational inclusion problems, J. appl. math. stochastic anal., 17, 2, 193-195, (2004) · Zbl 1064.49012
[36] Verma, R.U., Sensitivity analysis for generalized strongly monotone variational inclusions based on the \((A, \eta)\)-resolvent operator technique, Appl. math. lett., 19, 1409-1413, (2006) · Zbl 1133.49014
[37] Lan, H.Y.; Cho, Y.J.; Verma, R.U., Nonlinear relaxed cocoercive variational inclusions involving \((A, \eta)\)-accretive mappings in Banach spaces, Comput. math. appl., 51, 9-10, 1529-1538, (2006) · Zbl 1207.49011
[38] Lan, H.Y., Stability of iterative processes with errors for a system of nonlinear \((A, \eta)\)-accretive variational inclusions in Banach spaces, Comput. math. appl., 56, 290-303, (2008) · Zbl 1145.49302
[39] Peng, J.W.; Zhu, D.L., Existence of solutions and convergence of iterative algorithms for a system of generalized nonlinear mixed quasi-variational inclusions, Comput. math. appl., 53, 693-705, (2007) · Zbl 1133.49020
[40] N.J. Huang, Y.P. Fang, C.X. Deng, Nonlinear variational inclusions involving generalized \(m\)-accretive mappings, in: Proceedings of the Bellman Continuum: International Workshop on Uncertain Systems and Soft Computing, Beijing, China, July 24-27, 2002, pp. 323-327.
[41] Nie, H.; Liu, Z.; Kim, K.H.; Kang, S.M., A system of nonlinear variational inequalities involving strongly monotone and pseudocontractive mappings, Adv. nonlinear var. inequal., 6, 2, 91-99, (2003) · Zbl 1098.47055
[42] Xu, H.K., Inequalities in Banach spaces with applications, Nonlinear anal., 16, 12, 1127-1138, (1991) · Zbl 0757.46033
[43] Fang, Y.P.; Huang, N.J., \(H\)-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. math. lett., 17, 6, 647-653, (2004) · Zbl 1056.49012
[44] Liu, L.S., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. math. anal. appl., 194, 114-125, (1995) · Zbl 0872.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.