zbMATH — the first resource for mathematics

On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. (English) Zbl 1208.35002
Summary: For any \(n\)-dimensional compact Riemannian manifold \((M,g)\) without boundary and another compact Riemannian manifold \((N,h)\), the authors establish the uniqueness of the heat flow of harmonic maps from \(M\) to \(N\) in the class \(C([0, T),W^{1,n})\). For the hydrodynamic flow \((u,d)\) of nematic liquid crystals in dimensions \(n = 2\) or \(3\), it is shown that the uniqueness holds for the class of weak solutions provided either (i) for \(n = 2\), \(u \in L_t^{\infty } L_x^{2} \cap L_t^{2} H_x^{1}\), \(\nabla P \in L_t^{\frac{4}{3}} L_x^{\frac{4}{3}}\), and \(\nabla d \in L_t^{\infty } L_x^{2} \cap L_t^{2} H_x^{2}\); or (ii) for \(n = 3\), \(u \in L_t^{\infty} L_x^{2} \cap L_t^{2} H_x^{1} \cap C ([0, T), L^n)\), \(P \in L_t^{\frac{n}{2}} L_x^{\frac{n}{2}}\), and \(\nabla d \in L_t^{2} L_x^{2} \cap C ([0, T), L^n)\). This answers affirmatively the uniqueness question posed by Lin-Lin-Wang. The proofs are very elementary.

35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35K55 Nonlinear parabolic equations
58J35 Heat and other parabolic equation methods for PDEs on manifolds
35D30 Weak solutions to PDEs
Full Text: DOI Link
[1] Caffarelli, L., Kohn, R. and Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 1982, 771–831. · Zbl 0509.35067
[2] Chang, K., Heat flow and boundary value problem for harmonic maps, Annales de l’institut Henri Poincaré Analyse nonlinairé, 6(5), 1989, 363–395.
[3] Chang, K., Ding, W. and Ye, R., Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom., 36, 1992, 507–515. · Zbl 0765.53026
[4] Chen, Y. and Ding, W., Blow-up and global existence for heat flows of harmonic maps, Invent. Math., 99(3), 1990, 567–578. · Zbl 0674.58019
[5] Chen, Y. and Lin, F., Evolution of harmonic maps with Dirichlet boundary conditions, Comm. Anal. Geom., 1(3–4), 1993, 327–346. · Zbl 0845.35049
[6] Chen, Y. and Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z., 201(1), 1989, 83–103. · Zbl 0652.58024
[7] Ericksen, J. L., Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9, 1962, 371–378. · Zbl 0105.23403
[8] Escauriaza, L., Serëgin, G. and Sverak, V., L 3,solutions of Navier-Stokes equations and backward uniqueness (in Russian), Uspekhi Mat. Nauk, 58(2), 2003, 3–44; Translation in Russian Math. Surveys, 58(2), 2003, 211–250.
[9] Freire, A., Uniqueness for the harmonic map flow from surfaces to general targets, Comment Math. Helvetici, 70(1), 1995, 310–338. · Zbl 0831.58018
[10] Giga, Y., Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eqns., 61, 1986, 186–212. · Zbl 0577.35058
[11] Huang, T. and Wang, C. Y., Notes on the regularity of harmonic map systems, Proc. Amer. Math. Soc., 138, 2010, 2015–2023. · Zbl 1191.35118
[12] Kato, T., Strong L p solutions of the Navier-Stokes equations in \(\mathbb{R}\)m, with applications to weak solutions, Math. Z., 187, 1984, 471–480. · Zbl 0545.35073
[13] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1934, 193–248. · JFM 60.0726.05
[14] Leslie, F. M., Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28, 1968, 265–283. · Zbl 0159.57101
[15] Lin, F. H., Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena, Comm. Pure Appl. Math., 42, 1989, 789–814. · Zbl 0703.35173
[16] Lin, F. H., A new proof of the Caffarelli-Kohn-Nirenberg Theorem, Comm. Pure Appl. Math., LI, 1998, 0241–0257. · Zbl 0958.35102
[17] Lin, F. H. and Liu, C. Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., XLVIII, 1995, 501–537. · Zbl 0842.35084
[18] Lin, F. H. and Liu, C., Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Dis. Cont. Dyn. Sys., 2, 1996, 1–23.
[19] Lin, F. H., Lin, J. Y. and Wang, C. Y., Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197(1), 2010, 297–336. · Zbl 1346.76011
[20] Seregin, G., On the number of singular points of weak solutions to the Navier-Stokes equations, Comm. Pure Appl. Math., LIV, 2001, 1019–1028. · Zbl 1030.35133
[21] Struwe, M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helvetici, 60, 1985, 558–581. · Zbl 0595.58013
[22] Wang, C. Y., A remark on harmonic map flows from surfaces, Diff. Int. Eqs., 12(2), 1999, 161–166. · Zbl 1008.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.