×

Hybrid proximal-type and hybrid shrinking projection algorithms for equilibrium problems, maximal monotone operators, and relatively nonexpansive mappings. (English) Zbl 1208.49036

Summary: We introduce two hybrid proximal-type algorithms and two hybrid shrinking projection algorithms by using the hybrid proximal-type method and the hybrid shrinking projection method, respectively, for finding a common element of the set of solutions of an equilibrium problem, the set of fixed points of a relatively nonexpansive mapping, and the set of solutions to the equation \(0 \in Tx\) for a maximal monotone operator \(T\) defined on a uniformly smooth and uniformly convex Banach space. The strong convergence of the sequences generated by the proposed algorithms is established. Our results improve and generalize several known results in the literature.

MSC:

49M30 Other numerical methods in calculus of variations (MSC2010)
49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47H05 Monotone operators and generalizations
65K10 Numerical optimization and variational techniques
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alber Ya. I., Theory and Applications of Nonlinear Operators of Monotonicand Accretive Type pp 15– (1996)
[2] Alber Ya. I., Analysis 21 pp 17– (2001)
[3] Alber Ya. I., Panamer. Math. J. 4 pp 39– (1994)
[4] DOI: 10.1016/S0893-9659(99)00062-2 · Zbl 0940.49010
[5] DOI: 10.1007/s10898-004-8269-9 · Zbl 1066.90080
[6] Blum E., Math. Student 63 pp 123– (1994)
[7] DOI: 10.1016/j.camwa.2007.06.010 · Zbl 1147.49006
[8] DOI: 10.1016/j.amc.2007.09.011 · Zbl 1151.65058
[9] DOI: 10.1016/j.cam.2007.01.034 · Zbl 1144.65045
[10] DOI: 10.1016/j.cam.2007.02.022 · Zbl 1143.65049
[11] Cioranescu I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (1990) · Zbl 0712.47043
[12] Combettes P.L., J. Nonlinear Convex Anal. 6 pp 117– (2005)
[13] DOI: 10.1137/S1052623499364134 · Zbl 1002.49013
[14] DOI: 10.1023/A:1024971128483 · Zbl 1053.90110
[15] DOI: 10.1137/0329022 · Zbl 0737.90047
[16] DOI: 10.1006/jath.2000.3493 · Zbl 0992.47022
[17] DOI: 10.1137/S105262340139611X · Zbl 1101.90083
[18] Moudafi A., J. Inequal. Pure Appl. Math. 4 (2003)
[19] Martinet B., Rev. Franc. Inform. Rech. Oper. 4 pp 154– (1970)
[20] DOI: 10.1016/j.jat.2005.02.007 · Zbl 1071.47063
[21] Reich S., Theory and Applications of Nonlinear Operators of Accretive and Monotone Type pp 313– (1996)
[22] DOI: 10.1137/0314056 · Zbl 0358.90053
[23] Solodov M.V., Math. Prog. 87 pp 189– (2000)
[24] Tada A., Nonlinear Analysis and Convex Analysis pp 609– (2007)
[25] DOI: 10.1007/s10957-007-9187-z · Zbl 1147.47052
[26] DOI: 10.1016/j.jmaa.2006.08.036 · Zbl 1122.47056
[27] DOI: 10.1016/j.jmaa.2007.09.062 · Zbl 1134.47052
[28] Takahashi W., Fixed Point Theory Appl. (2008)
[30] DOI: 10.1016/0362-546X(91)90200-K · Zbl 0757.46033
[31] DOI: 10.1007/s10957-007-9261-6 · Zbl 1278.90446
[32] DOI: 10.1016/j.na.2006.08.021 · Zbl 1124.47046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.