×

zbMATH — the first resource for mathematics

Morava \(K\)-theory of groups of order 32. (English) Zbl 1208.55004
This paper is concerned with the computation of Morava \(K\)-theory of groups of small orders using the Serre spectral sequence. The main result is the fact that the Morava \(K\)-theory of the 51 groups of order 32 is concentrated in even degrees.

MSC:
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
57T25 Homology and cohomology of \(H\)-spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M Bakuradze, V Vershinin, Morava \(K\)-theory rings for the dihedral, semidihedral and generalized quaternion groups in Chern classes, Proc. Amer. Math. Soc. 134 (2006) 3707 · Zbl 1111.55006 · doi:10.1090/S0002-9939-06-08424-3
[2] M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 · Zbl 1007.55004 · doi:10.1090/S0894-0347-00-00332-5
[3] J Hunton, The Morava \(K\)-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990) 309 · Zbl 0705.55009 · doi:10.1017/S0305004100068572
[4] I Kriz, Morava \(K\)-theory of classifying spaces: some calculations, Topology 36 (1997) 1247 · Zbl 0896.55005 · doi:10.1016/S0040-9383(96)00049-3
[5] I Kriz, K P Lee, Odd-degree elements in the Morava \(K(n)\) cohomology of finite groups, Topology Appl. 103 (2000) 229 · Zbl 0963.55004 · doi:10.1016/S0166-8641(99)00031-0
[6] B Schuster, On the Morava \(K\)-theory of some finite \(2\)-groups, Math. Proc. Cambridge Philos. Soc. 121 (1997) 7 · Zbl 0896.55004 · doi:10.1017/S0305004196001156
[7] B Schuster, Morava \(K\)-theory of classifying spaces, Habilitationsschrift (2006) · www.math.uni-wuppertal.de
[8] B Schuster, N Yagita, Morava \(K\)-theory of extraspecial \(2\)-groups, Proc. Amer. Math. Soc. 132 (2004) 1229 · Zbl 1042.55009 · doi:10.1090/S0002-9939-03-07183-1
[9] M Tezuka, N Yagita, Cohomology of finite groups and Brown-Peterson cohomology (editors G Carlsson, R Cohen, H R Miller, D C Ravenel), Lecture Notes in Math. 1370, Springer (1989) 396 · Zbl 0673.55005 · doi:10.1007/BFb0085243
[10] M Tezuka, N Yagita, Cohomology of finite groups and Brown-Peterson cohomology. II (editor M Mimura), Lecture Notes in Math. 1418, Springer (1990) 57 · Zbl 0721.55002 · doi:10.1007/BFb0083692
[11] N Yagita, Equivariant BP-cohomology for finite groups, Trans. Amer. Math. Soc. 317 (1990) 485 · Zbl 0693.55005 · doi:10.2307/2001474
[12] N Yagita, Cohomology for groups of \(\mathrm{rank}_pG=2\) and Brown-Peterson cohomology, J. Math. Soc. Japan 45 (1993) 627 · Zbl 0809.20042 · doi:10.2969/jmsj/04540627
[13] N Yagita, Note on BP-theory for extensions of cyclic groups by elementary abelian \(p\)-groups, Kodai Math. J. 20 (1997) 79 · Zbl 0896.55006 · doi:10.2996/kmj/1138043746
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.