×

zbMATH — the first resource for mathematics

An EPQ model with inflation in an imperfect production system. (English) Zbl 1208.90012
Summary: A production inventory model is considered for stochastic demand with the effect of inflation. Generally, every manufacturing system wants to produce perfect quality items. However, due to real-life problems (labor problems, machine breakdown, etc.), a certain percentage of products are of imperfect quality. The imperfect items are reworked at a cost. The lifetime of a defective item follows a Weibull distribution. Due to the production of imperfect quality items, a product shortage occurs. The profit function is derived by using both a general distribution of demand and the uniform rectangular distribution of demand. Computational experiments along with graphical illustrations are presented to discuss the optimality of the probability functions.
Reviewer: Reviewer (Berlin)

MSC:
90B05 Inventory, storage, reservoirs
90B30 Production models
90B25 Reliability, availability, maintenance, inspection in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Harris, F.W., How many parts to make at once, factory, The mag. manage., 10, 135-136, (1913), 152
[2] P.A. Moran, The theory of storage, Metuen, London, 1959. · Zbl 0086.13602
[3] Wagner, H.M., Statistical management of inventory systems, (1962), J. Wiley USA · Zbl 0101.36901
[4] Miller, Jr. R.G., Continuous time stochastic storage processes with random linear inputs and outputs, J. math. mech., 12, 275-291, (1963) · Zbl 0126.16102
[5] Faddy, M.J., Optimal control for finite dams, Adv. appl. probab., 6, 689-710, (1974) · Zbl 0297.60043
[6] Harrison, J.M.; Resnic, S.I., The stationary distribution and first exit probabilities of a storage process with general release rules, Math. oper. res., 1, 347-358, (1976) · Zbl 0381.60092
[7] Nahmias, S., Inventory models in encyclopedia of computer science and technology, (), 447-483, vol. 9
[8] Meyer, R.R.; Rothkopf, M.H.; Smith, S.A., Reliability and inventory in a production-storage system, Manage. sci., 25, 799-807, (1979) · Zbl 0435.90055
[9] Scarf, H.E., The optimality of (s,S) policies in the dynamic inventory problem, () · Zbl 0183.24003
[10] Iglehart, D.L., Optimality of (s,S) inventory policies in the infinite horizon dynamic inventory problem, Manage. sci., 9, 259-267, (1963)
[11] Veinott, A.; Wagner, H., Computing optimal (s,S), inventory policies, Manage. sci., 11, 525-552, (1965) · Zbl 0137.14102
[12] Archibald, B.; Silver, E., (s,S) policies under continuous review and discrete compound Poisson demand, Manage. sci., 24, 899-908, (1978) · Zbl 0385.90044
[13] Silver, E.A., Operations research in inventory management: a review and critique, Oper. res., 29, 628-645, (1980)
[14] Federgruen, A.; Zipkin, P., An efficient algorithm for computing optimal (s,S) policies, Oper. res., 32, 1268-1285, (1984) · Zbl 0553.90031
[15] Zheng, Y.S.; Federgruen, A., Finding optimal (s,S) policies is about as simple as evaluating a single policy, Oper. res., 39, 654-665, (1991) · Zbl 0749.90024
[16] Ke, H.; Ma, W.; Ni, Y., Optimization models and a GA-based algorithm for stochastic time-cost trade-off problem, Appl. math. comput., 215, 08-313, (2009) · Zbl 1187.90158
[17] Zhou, Y.W., A production-inventory model for a finite time horizon with linear trend in demand and shortages, Syst. eng.-theor. prac., 5, 43-49, (1995)
[18] Khouja, M.; Mehrej, A., Economic production lot size model with variable production rate and imperfect quality, J. comput. oper. res., 45, 1405-1417, (1995) · Zbl 0814.90020
[19] Zhou, Y.W., Optimal production policy for an item with shortages and increasing time-varying demand, J. oper. res. soc., 47, 1175-1183, (1996) · Zbl 0869.90032
[20] Chen, J.; Li, K-H.; Lam, Y., Bayesian single and double variable sampling plan for the Weibull distribution with censoring, Eur. J. oper. res., 177, 1062-1073, (2007) · Zbl 1111.91021
[21] Dutta, P.; Chakraborty, D.; Roy, A.R., Continuous review inventory model in mixed fuzzy and stochastic environment, Appl. math. comput., 188, 970-980, (2007) · Zbl 1137.90756
[22] Chiu, S.W.; Wang, S.L.; Chiu, Y.S.P., Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns, Eur. J. oper. res., 180, 664-676, (2007) · Zbl 1123.90002
[23] Chiu, Y.S.P.; Ting, C.K., A note on determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns, Eur. J. oper. res., 201, 641-643, (2010) · Zbl 1175.90016
[24] Sohn, S.Y.; Chang, I.S.; Moon, T.H., Random effects Weibull regression model for occupational lifetime, Eur. J. oper. res., 179, 124-131, (2007) · Zbl 1163.91457
[25] Wienke, A.; Kuss, O., Random effects Weibull regression model for occupational lifetime, Eur. J. oper. res., 196, 1249-1250, (2009) · Zbl 1176.90389
[26] Arizono, I.; Kawamura, Y.; Takemoto, Y., Reliability test for Weibull distribution with variational shape parameter based on sudden death lifetime data, Eur. J. oper. res., 189, 570-574, (2008) · Zbl 1149.90325
[27] Seliaman, M.E.; Ahmad, A.R., Optimizing inventory decisions in a multi-stage supply chain under stochastic demands, Appl. math. comput., 206, 538-542, (2008) · Zbl 1177.90028
[28] Skouri, K.; Konstantaras, I.; Papachristos, S.; Ganas, I., Inventory model with ramp type demand rate, partial backlogging and Weibull deterioration rate, Eur. J. oper. res., 192, 79-92, (2009) · Zbl 1171.90326
[29] Xu, N., Optimal policy for a dynamic, non-stationary stochastic inventory problem with capacity commitment, Eur. J. oper. res., 199, 400-408, (2009) · Zbl 1176.90040
[30] Perea, F.; Puerto, J.; Fernandez, F.R., Modeling cooperation on a class of distribution problems, Eur. J. oper. res., 198, 726-733, (2009) · Zbl 1176.90075
[31] Liao, G.L.; Chen, Y.H.; Sheu, S.H., Optimal economic production policy for imperfect process with imperfect repair and maintenance, Eur. J. oper. res., 195, 348-357, (2009) · Zbl 1161.90005
[32] Sana, S., Optimal selling price and lotsize with time varying deterioration 3 and partial backlogging, Appl. math. comput., 217, 185-194, (2010) · Zbl 1231.90055
[33] Salameh, M.K.; Jaber, M.Y., Economic production quantity model for items with imperfect quality, Int. J. prod. econ., 26, 59-64, (2000)
[34] Cardenas-Barron, L.E., Observation on: economic production quantity model for items with imperfect quality [ int. J. prod. econ. 64 (2000) 59-64], Int. J. prod. econ., 67, 201, (2000)
[35] Goyal, S.K.; Cardenas-Barron, L.E., Note on economic production quantity model for items with imperfect quality a practical approach, Int. J. prod. econ., 77, 85-87, (2002)
[36] Goyal, S.K.; Huang, C.K.; Chang, K.C., A simple integrated production policy of an imperfect item for vendor and buyer, Prod. plan. cont., 14, 596-602, (2003)
[37] Sana, S.; Goyal, S.K.; Chaudhuri, K.S., A production-inventory model for a deteriorating item with trended demand and shortages, Eur. J. oper. res., 157, 357-371, (2004) · Zbl 1103.90335
[38] Mandal, N.K.; Roy, T.K., Multi-item imperfect production lot size model with hybrid number cost parameters, Appl. math. comput., 182, 1219-1230, (2006) · Zbl 1114.90001
[39] Buzacott, J.A., Economic order quantities with inflation, Oper. res. qua., 26, 553-558, (1975)
[40] Bierman, H.; Thomas, J., Inventory decisions under inflation condition, Decision sci., 8, 151-155, (1977)
[41] Misra, R.B., A note on optical inventory management under inflation, Nav. res. log. qua., 26, 161-165, (1979) · Zbl 0396.90031
[42] Yang, H.L.; Teng, J.T.; Chern, M.S., Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand, Nav. res. log., 48, 144-158, (2001) · Zbl 0981.90003
[43] Sarker, B.R.; Jamal, A.M.M.; Wang, S., Supply chain model for permissible products under inflation and permissible delay in payment, Comput. oper. res., 27, 59-75, (2000) · Zbl 0935.90013
[44] Moon, I.; Lee, S., The effects of inflation and time-value of money on an economic order quantity models with random product life cycle, Eur. J. oper. res., 125, 140-153, (2000)
[45] Yang, H.L., Two warehouse inventory models for deteriorating items with shortages under inflation, Eur. J.oper. res., 157, 344-356, (2004) · Zbl 1103.90312
[46] Moon, I.; Giri, B.C.; Ko, B., Economic order quantity models for accelerating/deteriorating items under inflation and time discounting, Eur. J. oper. res., 162, 773-785, (2005) · Zbl 1067.90004
[47] Jolai, F.; Moghaddam, R.T.; Rabbani, M.; Sadoughian, M.R., An economic production lot size model with deteriorating items, stock-dependent demand, inflation, and partial backlogging, Appl. math. comput., 181, 380-389, (2006) · Zbl 1142.90385
[48] Dey, J.K.; Mondal, S.K.; Maity, M., Two storage inventory problem with dynamic demand and interval valued lead time over finite time horizon under inflation and time value of money, Eur. J. oper. res., 185, 170-194, (2008) · Zbl 1142.90005
[49] Chern, M-S.; Yang, H-L.; Teng, J-T.; Papachristos, S., Partial backlogging inventory lot size models for deteriorating items with fluctuating demand under inflation, Eur. J. oper. res., 191, 127-141, (2008) · Zbl 1144.90004
[50] Sarkar, B.; Sana, S.S.; Chaudhuri, K.S., A finite replenishment model with increasing demand under inflation, Int. J. math. oper. res., 2, 347-385, (2010) · Zbl 1188.90016
[51] Sarkar, B.; Sana, S.S.; Chaudhuri, K.S., A stock dependent inventory model in an imperfect production process, Int. J. proc. manage., 3, 361-378, (2010)
[52] B. Sarkar, S.S. Sana, K.S. Chaudhuri, An economic production quantity model with stochastic demand in an imperfect production system, Int. J. Serv. Oper. Manage (2011), in press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.