×

First-order optimality conditions and duality results for multi-objective optimisation problems. (English) Zbl 1208.90151

Summary: First-order optimality conditions for a certain type of multi-objective optimisation problems are discussed under univexity concept. A number of duality results corresponding to this sort of multi-objective problems are also shown.

MSC:

90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming

Keywords:

univexity
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aghezzaf, B., & Hachimi, M. (2000). Generalised invexity and duality in multiobjective programming problems. Journal of Global Optimization, 18, 91–101. · Zbl 0970.90087
[2] Ehrgott, M. (2000). Multicriteria optimisation. Lecture notes in economics and mathematical systems. Berlin: Springer.
[3] Ginchev, I., & Ivanov, V. I. (2008). Second-order optimality conditions for problems with C1 data. Journal of Mathematical Analysis and Applications, 340, 646–657. · Zbl 1190.90208
[4] Jeyakumar, V., & Mond, B. (1992). On generalised convex mathematical programming. Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 34, 43–53. · Zbl 0773.90061
[5] Maeda, T. (1994). Constraint qualification in multiobjective optimisation problems: Differentiable case. Journal of Optimization Theory and Applications, 80, 483–500. · Zbl 0797.90083
[6] Miettinen, K. (1999). Nonlinear multi-objective optimisation. Boston: Kluwer Academic. · Zbl 1054.90070
[7] Mishra, S. K. (1996). Generalised proper efficiency and duality for a class of nondifferentiable multiobjective variational problems with V-invexity. Journal of Mathematical Analysis and Applications, 202, 53–71. · Zbl 0867.90097
[8] Mishra, S. K. (1998). On multiple-objective optimisation with generalised univexity. Journal of Mathematical Analysis and Applications, 224, 131–148. · Zbl 0911.90292
[9] Mishra, S. K. (2000). Multiobjective second order symmetric duality with cone constraints. European Journal of Operational Research, 126, 675–682. · Zbl 0971.90103
[10] Mishra, S. K., & Giorgi, G. (2000). Optimality and duality with generalised semi-univexity. Opsearch, 37, 340–350. · Zbl 1141.90573
[11] Mishra, S. K., & Giorgi, G. (2008). Invexity and optimisation. Nonconvex optimisation and its applications (Vol. 88). Berlin: Springer.
[12] Mishra, S. K., & Rueda, N. G. (2000). Higher-order generalised invexity and duality in mathematical programming. Journal of Mathematical Analysis and Applications, 247, 173–182. · Zbl 1056.90136
[13] Mishra, S. K., & Rueda, N. G. (2002). Higher-order generalised invexity and duality in nondifferentiable mathematical programming. Journal of Mathematical Analysis and Applications, 272, 496–506. · Zbl 1175.90318
[14] Mishra, S. K., Wang, S. Y., & Lai, K. K. (2005). Optimality and duality for multi-objective optimisation under generalised type I univexity. Journal of Mathematical Analysis and Applications, 303, 315–326. · Zbl 1090.90173
[15] Mishra, S. K., Wang, S. Y., & Lai, K. K. (2008). V-invex functions and vector optimisation. Optimisation and its applications (Vol. 14). New York: Springer.
[16] Mishra, S. K., Wang, S. Y., & Lai, K. K. (2009). Generalised convexity and vector optimisation. Nonconvex optimisation and its applications (Vol. 90). Berlin: Springer.
[17] Rizvi, M. M., & Nasser, M. (2006). New second-order optimality conditions in multiobjective optimisation problems: Differentiable case. Journal of the Indian Institute of Science, 86, 279–286. · Zbl 1226.90097
[18] Rueda, N. G., Hanson, M. A., & Singh, C. (1995). Optimality and duality with generalised convexity. Journal of Optimization Theory and Applications, 86, 491–500. · Zbl 0838.90114
[19] Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multi-objective optimisation. London: Academic Press. · Zbl 0566.90053
[20] Zhian, L., & Qingkai, Ye. (2001). Duality for a class of multiobjective control problems with generalised invexity. Journal of Mathematical Analysis and Applications, 256, 446–461. · Zbl 1016.90043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.