On stability of finitely generated shift-invariant systems. (English) Zbl 1209.41006

Let \({\Psi}=\{\psi_1, \dots, \psi_N\} \subset L^2(\mathbb R^d)\), \(T({\Psi}) := \{ \psi(\cdot - k): \psi \in {\Psi}, k \in\mathbb Z^d\}\), and let \(S({\Psi})\) denote the closure of the linear span of \(T({\Psi}\)).
The author focuses on the case where \(T({\Psi})\) has a unique biorthogonal system \(\{g^{\psi}\}\) in \(S({\Psi})\), defines the “rectangular” partial sum operators by \[ T_{\mathbf N}f:= \sum_{\psi \in {\Psi}} \sum_{k\in\mathbb Z^d: |k_i|\leq N_i} \langle f, g_k^{\psi}\rangle \psi(\cdot - k), \] for \(f \in S({\Psi})\) and \({\mathbf N}=(N_1, N_2, \dots, N_d) \in \mathbb{N}_0^d\), where \(\mathbb{N}_0\) denotes the set of nonnegative integers, and finds necessary and sufficient conditions for \(T_{\mathbf N}f\to f\), as \(\min_i N_i \to +\infty\), for all \(\;f \in S({\Psi})\).


41A45 Approximation by arbitrary linear expressions
42C15 General harmonic expansions, frames
Full Text: DOI Link


[1] Bownik, M.: The structure of shift-invariant subspaces of L 2(R n ). J. Funct. Anal. 177(2), 282–309 (2000) · Zbl 0986.46018
[2] Bownik, M.: Inverse volume inequalities for matrix weights. Indiana Univ. Math. J. 50(1), 383–410 (2001) · Zbl 0992.42006
[3] Chang, S.-Y.A., Fefferman, R.: Some recent developments in Fourier analysis and H p -theory on product domains. Bull. Am. Math. Soc. (N.S.) 12(1), 1–43 (1985) · Zbl 0557.42007
[4] Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992) · Zbl 0776.42018
[5] de Boor, C., Ron, A.: Fourier analysis of the approximation power of principal shift-invariant spaces. Constr. Approx. 8(4), 427–462 (1992) · Zbl 0801.41027
[6] de Boor, C., DeVore, R.A., Ron, A.: On the construction of multivariate (pre)wavelets. Constr. Approx. 9(2–3), 123–166 (1993) · Zbl 0773.41013
[7] de Boor, C., DeVore, R.A., Ron, A.: Approximation from shift-invariant subspaces of \(L_2(\mathbf R^ d)\) . Trans. Am. Math. Soc. 341(2), 787–806 (1994) · Zbl 0790.41012
[8] de Boor, C., DeVore, R.A., Ron, A.: The structure of finitely generated shift-invariant spaces in L 2(R d ). J. Funct. Anal. 119(1), 37–78 (1994) · Zbl 0806.46030
[9] Dyn, N., Ron, A.: Radial basis function approximation: from gridded centres to scattered centres. Proc. Lond. Math. Soc. (3) 71(1), 76–108 (1995) · Zbl 0827.41007
[10] Frazier, M., Roudenko, S.: Matrix-weighted Besov spaces and conditions of A p type for 0<p. Indiana Univ. Math. J. 53(5), 1225–1254 (2004) · Zbl 1081.42023
[11] Goldberg, M.: Matrix A p weights via maximal functions. Pac. J. Math. 211(2), 201–220 (2003) · Zbl 1065.42013
[12] Heil, C., Powell, A.M.: Gabor Schauder bases and the Balian-Low theorem. J. Math. Phys. 47(11), 113506 (2006) · Zbl 1112.42004
[13] Helson, H.: Lectures on Invariant Subspaces. Academic Press, New York (1964) · Zbl 0119.11303
[14] Hernández, E., Weiss, G.: A First Course on Wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton (1996). With a foreword by Yves Meyer · Zbl 0885.42018
[15] Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973) · Zbl 0262.44004
[16] Kolmogoroff, A.A.: Stationary sequences in Hilbert spaces. Trab. Estad. 4, 55–73, 243–270 (1953) · Zbl 0053.27101
[17] Nielsen, M., Šikić, H.: Schauder bases of integer translates. Appl. Comput. Harmon. Anal. 23(2), 259–262 (2007) · Zbl 1137.42009
[18] Ricci, F., Stein, E.M.: Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. J. Funct. Anal. 73(1), 179–194 (1987) · Zbl 0622.42010
[19] Ron, A.: The L 2-approximation orders of principal shift-invariant spaces generated by a radial basis function. In: Numerical Methods in Approximation Theory, vol. 9, Oberwolfach, 1991. Internat. Ser. Numer. Math., vol. 105, pp. 245–268. Birkhäuser, Basel (1992) · Zbl 0820.41014
[20] Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(R d ). Can. J. Math. 47(5), 1051–1094 (1995) · Zbl 0838.42016
[21] Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355(1), 273–314 (2003) (electronic) · Zbl 1010.42011
[22] Singer, I.: Bases in Banach Spaces. I. Die Grundlehren der mathematischen Wissenschaften, Band 154. Springer, New York (1970)
[23] Treil, S., Volberg, A.: Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem. Ark. Mat. 35(2), 363–386 (1997) · Zbl 0961.44006
[24] Treil, S., Volberg, A.: Wavelets and the angle between past and future. J. Funct. Anal. 143(2), 269–308 (1997) · Zbl 0876.42027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.