×

zbMATH — the first resource for mathematics

Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x^{1/3}\) force nonlinear oscillator. (English) Zbl 1209.65083
Summary: A modified He’s homotopy perturbation method (HHPM) is used to calculate the periodic solutions of a conservative nonlinear oscillator for which the elastic force term is proportional to \(x^{1/3}\). The He’s homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified HHPM works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 0.6% for small and large values of oscillation amplitude, while this relative error is 0.17% for the second iteration and as low as 0.024% when the third approximation is considered. Comparison of the result obtained using this method with those obtained by different harmonic balance methods reveals that the former is very effective and convenient.

MSC:
65L99 Numerical methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J.H. He, Non-perturbative methods for strongly nonlinear problems, Dissertation, De-Verlag im Internet GmbH, Berlin, 2006
[2] Nayfeh, A.H., Problems in perturbations, (1985), Wiley New York
[3] He, J.H., Int. J. nonlinear sci. numer. simul., 1, 51, (2000)
[4] Mickens, R.E., Oscillations in planar dynamics systems, (1996), World Scientific Singapore · Zbl 1232.34045
[5] He, J.H., J. sound vib., 229, 1257, (2000)
[6] He, J.H., Int. J. nonlinear sci. numer. simul., 2, 317, (2001)
[7] He, J.H., Int. J. nonlinear mech., 37, 309, (2002)
[8] He, J.H., Int. J. nonlinear mech., 37, 315, (2002)
[9] Beléndez, A.; Beléndez, T.; Hernández, A.; Gallego, S.; Ortuño, M.; Neipp, C., J. sound vib., 303, 937, (2007)
[10] Amore, P.; Aranda, A., J. sound vib., 283, 1115, (2005)
[11] Amore, P.; Fernández, F.M., Eur. J. phys., 26, 589, (2005)
[12] He, J.H., Int. J. nonlinear sci. numer. simul., 6, 207, (2005)
[13] Amore, P.; Raya, A.; Fernández, F.M., Eur. J. phys., 26, 1057, (2005)
[14] Amore, P.; Raya, A.; Fernández, F.M., Phys. lett. A, 340, 201, (2005)
[15] Shou, D.H.; He, J.H., Int. J. nonlinear sci. numer. simul., 8, 1, 121, (2007)
[16] Mickens, R.E., J. sound vib., 244, 563, (2001)
[17] Gottlieb, H.P.W., J. sound vib., 297, 243, (2006)
[18] Lim, C.W.; Wu, B.S.; Sun, W.P., J. sound vib., 296, 1039, (2006)
[19] Beléndez, A.; Hernández, A.; Márquez, A.; Beléndez, T.; Neipp, C., Eur. J. phys., 27, 539, (2006)
[20] Beléndez, A.; Hernández, A.; Beléndez, T.; Álvarez, M.L.; Gallego, S.; Ortuño, M.; Neipp, C., J. sound vib., 302, 1018, (2007)
[21] Hu, H.; Tang, J.H., J. sound vib., 294, 637, (2006)
[22] Hu, H., J. sound vib., 293, 462, (2006)
[23] Itovich, G.R.; Moiola, J.L., Chaos solitons fractals, 27, 647, (2005)
[24] He, J.H., Int. J. mod. phys. B, 20, 1141, (2006)
[25] He, J.H., Int. J. mod. phys. B, 20, 2561, (2006)
[26] He, J.H., Appl. math. comput., 151, 287, (2004)
[27] Cai, X.C.; Wu, W.Y.; Li, M.S., Int. J. nonlinear sci. numer. simul., 7, 1, 109, (2006)
[28] Cveticanin, L., Chaos solitons fractals, 30, 1221, (2006)
[29] Abbasbandy, S., Chaos solitons fractals, 30, 1206, (2006)
[30] Beléndez, A.; Hernández, A.; Beléndez, T.; Márquez, A., Eur. J. phys., 28, 93, (2007)
[31] Beléndez, A.; Beléndez, T.; Márquez, A.; Neipp, C., Chaos solitons fractals, (2006)
[32] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Álvarez, M.L.; Neipp, C., Int. J. nonlinear sci. numer. simul., 8, 1, 79, (2007)
[33] Beléndez, A.; Beléndez, T.; Neipp, C.; Hernández, A.; Álvarez, M.L., Chaos solitons fractals, (2007)
[34] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 411, (2006)
[35] Abbasbandy, S., Chaos solitons fractals, 31, 257, (2007)
[36] Siddiqui, A.; Mahmood, R.; Ghori, Q., Int. J. nonlinear sci. numer. simul., 7, 1, 15, (2006)
[37] He, J.H., Phys. lett. A, 350, 87, (2006)
[38] Rafei, M.; Ganji, D.D., Int. J. nonlinear sci. numer. simul., 7, 3, 321, (2006)
[39] Ganji, D.D., Phys. lett., 355, 337, (2006)
[40] Ariel, P.D.; Hayat, T., Int. J. nonlinear sci. numer. simul., 7, 4, 399, (2006)
[41] Abbasbandy, S., Chaos solitons fractals, 31, 1243, (2007)
[42] Mickens, R.E., J. sound vib., 292, 964, (2006)
[43] Mickens, R.E., J. sound vib., 255, 789, (2002)
[44] Mickens, R.E., J. sound vib., 246, 375, (2001)
[45] Cooper, K.; Mickens, R.E., J. sound vib., 250, 951, (2002)
[46] Lim, C.W.; Wu, B.S., J. sound vib., 281, 1157, (2005)
[47] Wu, B.S.; Sun, W.P.; Lim, C.W., Int. J. nonlinear mech., 41, 766, (2006)
[48] Ozis, T.; Yildirim, A., J. sound vib., 301, 415, (2007)
[49] (), 258, and 263, §6.1 and 6.5
[50] (), 258, and 263, §6.2 and 6.6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.