×

zbMATH — the first resource for mathematics

Solutions of time-dependent Emden-Fowler type equations by homotopy-perturbation method. (English) Zbl 1209.65106
Summary: We apply the homotopy-perturbation method (HPM) to obtain approximate analytical solutions of the time-dependent Emden-Fowler type equations. We also present a reliable new algorithm based on HPM to overcome the difficulty of the singular point at \(x=0\). The analysis is accompanied by some linear and nonlinear time-dependent singular initial value problems.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35K55 Nonlinear parabolic equations
35A35 Theoretical approximation in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wazwaz, A.M., Appl. math. comput., 166, 638, (2005)
[2] Chandrasekhar, S., Introduction to the study of stellar structure, (1967), Dover New York · Zbl 0079.23901
[3] Davis, H.T., Introduction to nonlinear differential and integral equations, (1962), Dover New York
[4] Richardson, O.U., The emission of electricity from hot bodies, (1921), Logmans Green London
[5] Shawagfeh, N.T., J. math. phys., 34, 9, 4364, (1993)
[6] Wazwaz, A.M., Appl. math. comput., 118, 287, (2001)
[7] Wazwaz, A.M., Appl. math. comput., 128, 45, (2002)
[8] Wazwaz, A.M., Appl. math. comput., 173, 165, (2006)
[9] Adomian, G., Comput. math. appl., 27, 145, (1994)
[10] Wazwaz, A.M., Appl. math. comput., 161, 543, (2005)
[11] He, J.H., Comput. methods appl. mech. engrg., 167, 1-2, 57, (1998)
[12] He, J.H., Appl. math. comput., 156, 527, (2004)
[13] He, J.H., Comput. methods appl. mech. engrg., 178, 3/4, 257, (1999)
[14] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000)
[15] He, J.H., Appl. math. comput., 135, 73, (2003)
[16] He, J.H., Appl. math. comput., 156, 527, (2004)
[17] He, J.H., Non-perturbative methods for strongly nonlinear problems, (2006), Die Deutsche Bibliothek Germany
[18] Abbasbandy, S., Appl. math. comput., 172, 431, (2006)
[19] Arief, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simul., 7, 4, 399, (2006)
[20] Beléndez, A.; Hernández, A.; Beléndez, T.; Neipp, C.; Márquez, A., Eur. J. phys., 28, 93, (2007)
[21] A. Beléndez, T. Beléndez, A. Márquez, C. Neipp, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.09.070, in press
[22] Biazar, J.; Ghazvini, H., Phys. lett. A, 366, 1-2, 79, (2007) · Zbl 1193.65040
[23] Cveticanin, L., J. sound vibration, 285, 1171, (2005)
[24] M.S.H. Chowdhury, I. Hashim, O. Abdulaziz, Phys. Lett. A, doi:10.1016/j.physleta.2007.04.007, in press
[25] El-Shahed, M., Int. J. nonlinear sci. numer. simul., 6, 163, (2005)
[26] Abd El-Latif, G.M., Appl. math. comput., 169, 576, (2005)
[27] Ganji, D.D., Phys. lett. A, 355, 337, (2006)
[28] Ganji, D.D.; Rajabi, A., Int. commun. heat mass transfer, 33, 391, (2006)
[29] Marinca, V., Arch. mech., 58, 223, (2006)
[30] Marinca, V.; Herisanu, N., Acta mech., 184, 231, (2006)
[31] Turgut, O.; Ahmet, Y., Chaos solitons fractals, 34, 2, 989, (2007)
[32] Rajabi, A., Phys. lett. A, 364, 1, 33, (2007)
[33] Rajabi, A.; Ganji, D.D.; Taherian, H., Phys. lett. A, 360, 570, (2007)
[34] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Phys. lett. A, 352, 404, (2006) · Zbl 1187.76622
[35] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Int. J. nonlinear sci. numer. simul., 7, 1, 7, (2006)
[36] Odibat, Z.; Momani, S., Phys. lett. A, 365, 5-6, 351, (2007)
[37] J.I. Ramos, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.018, in press
[38] Chowdhury, M.S.H.; Hashim, I., Phys. lett. A, 365, 5-6, 439, (2007) · Zbl 1203.65124
[39] M.S.H. Chowdhury, I. Hashim, Phys. Scr., submitted for publication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.