×

zbMATH — the first resource for mathematics

Application of homotopy-perturbation method to nonlinear population dynamics models. (English) Zbl 1209.65107
Summary: The homotopy-perturbation method (HPM) is employed to derive approximate series solutions of nonlinear population dynamics models. The nonlinear models considered are the multispecies Lotka-Volterra equations. The accuracy of this method is examined by comparison with the available exact and the fourth-order Runge-Kutta method (RK4).

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kingsland, I.S., Modeling nature: episodes in the history of population ecology, (1995), University of Chicago Press Chicago
[2] Leung, A.W., Systems of nonlinear partial differential equations: applications to biology and engineering, (1989), Kluwer Dordrecht · Zbl 0691.35002
[3] Hofbauer, J.; Sigmund, K., The theory of evolution and dynamical systems, (1988), Cambridge Univ. Press London
[4] Olek, S., SIAM rev., 36, 480, (1994)
[5] El-Shahed, M., Int. J. nonlinear sci. numer. simul., 6, 163, (2005)
[6] He, J.H., Appl. math. comput., 156, 591, (2004)
[7] He, J.H., Int. J. nonlinear sci. numer. simul., 6, 207, (2005)
[8] He, J.H., Comput. methods appl. mech. engrg., 178, 257, (1999)
[9] He, J.H., Comput. methods appl. mech. engrg., 167, 57, (1998)
[10] He, J.H., Int. J. non-linear mech., 35, 37, (2000)
[11] He, J.H., Appl. math. comput., 135, 73, (2003)
[12] He, J.H., Appl. math. comput., 156, 527, (2004)
[13] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 411, (2006)
[14] Arief, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simul., 7, 4, 399, (2006)
[15] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006)
[16] L.N. Zhang, J.H. He, Mathematical Problem in Engineering, Art. No. 83878 (2006) 1
[17] May, R.M.; Leonard, W.J., SIAM J. appl. math., 29, 243, (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.