×

zbMATH — the first resource for mathematics

Solving fractional diffusion and wave equations by modified homotopy perturbation method. (English) Zbl 1209.65111
Summary: This Letter applies the modified He’s homotopy perturbation method (HPM) suggested by Momani and Odibat to obtaining solutions of linear and nonlinear fractional diffusion and wave equations. The fractional derivative is described in the Caputo sense. Some illustrative examples are given, revealing the effectiveness and convenience of the method.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Comput. methods appl. mech. engng., 178, 3/4, 257, (1999)
[2] He, J.H., Appl. math. comput., 135, 739, (2003)
[3] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[4] He, J.H., Appl. math. comput., 151, 28792, (2004)
[5] He, J.H., Int. J. nonlinear sci. numer. simul., 6, 2078, (2005)
[6] He, J.H., Chaos solitons fractals, 26, 82733, (2005)
[7] He, J.H., Chaos solitons fractals, 26, 695, (2005)
[8] He, J.H., Phys. lett. A, 350, 87, (2006)
[9] Momani, S.; Odibat, Z., Phys. lett. A, 365, 345, (2007)
[10] Z. Odibat, S. Momani, Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, in press · Zbl 1152.34311
[11] S. Momani, Z. Odibat, Comparison between homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., in press · Zbl 1141.65398
[12] Abbasbandy, S., Chaos solitons fractals, 31, 1243, (2007)
[13] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 411, (2006)
[14] Rafei, M.; Ganji, D.D., Int. J. nonlinear sci. numer. simul., 7, 3, 321, (2006)
[15] Rafei, M.; Ganji, D.D.; Daniali, H., Appl. math. comput., 187, 1056, (2007)
[16] Ghorbani, A.; Saberi-Nadjafi, J., Int. J. nonlinear sci. numer. simul., 2, 229, (2007)
[17] Özis, T.; Yildirim, A., Int. J. nonlinear sci. numer. simul., 8, 2, 243, (2007)
[18] Özis, T.; Yildirim, A., Int. J. nonlinear sci. numer. simul., 8, 2, 239, (2007)
[19] Ghori, Q.K.; Ahmed, M.; Siddiqui, A.M., Int. J. nonlinear sci. numer. simul., 8, 185, (2007)
[20] Shou, D.H., Int. J. nonlinear sci. numer. simul., 8, 1, 121, (2007)
[21] Belendez, A.; Hernandez, T., Int. J. nonlinear sci. numer. simul., 8, 1, 79, (2007)
[22] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Int. J. nonlinear sci. numer. simul., 7, 1, 7, (2006)
[23] Ariel, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simul., 7, 399, (2006)
[24] Mainardi, F., On the initial value problem for the fractional diffusion-wave equation, (), 246-251
[25] Mainardi, F., Appl. math. lett., 9, 23, (1996)
[26] Schneider, W.R.; Wyss, W., J. math. phys., 30, 1, 134, (1998)
[27] El-Sayed, A.M.A., Int. J. theor. phys., 35, 2, 311, (1996)
[28] Nigmatullin, R.R., Phys. status solidi B, 133, 425, (1986)
[29] Luchko, Yu.; Gorenflo, R., Acta math. vietnamica, 24, 2, 207, (1999)
[30] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[31] Samko, G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[32] Mainardi, F.; Pagnin, G., Appl. math. comput., 141, 51, (2003)
[33] Mainardia, F.; Gorenflo, R., J. comput. appl. math., 118, 283, (2000)
[34] He, J.H., Computer methods appl. mech. eng., 167, 1-2, 57, (1998)
[35] Wazwaz, A.M., Appl. math. comput., 92, 1, (1998)
[36] Jafari, H.; Daftardar-Gejji, V., Appl. math. comput., 180, 2, 488, (2006)
[37] Momani, S., Comput. appl. math., 165, 459, (2005)
[38] Kaya, D.; El-Sayed, S.M., Appl. math. comput., 156, 2, 341, (2004)
[39] He, J.H., Appl. math. comput., 156, 3, 591, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.