×

zbMATH — the first resource for mathematics

Variational iteration method for solving integro-differential equations. (English) Zbl 1209.65152
Summary: The variational iteration method is applied to solve integro-differential equations. Some examples are given to illustrate the effectiveness of the method, the results show that the method provides a straightforward and powerful mathematical tool for solving various integro-differential equations.

MSC:
65R99 Numerical methods for integral equations, integral transforms
45J05 Integro-ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Int. J. non-linear mech., 34, 4, 699, (1999)
[2] He, J.H.; Wu, X.H., Chaos solitons fractals, 29, 1, 108, (2006)
[3] He, J.H., Appl. math. comput., 114, 2-3, 115, (2000)
[4] He, J.H., Comput. methods appl. mech. engrg., 167, 1-2, 57, (1998)
[5] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[6] Odibat, Z.M.; Momani, S., Int. J. non-linear sci. numer. simul., 7, 1, 27, (2006)
[7] Momani, S.; Odibat, Z., Chaos solitons fractals, 31, 5, 1248, (2007)
[8] Bildik, N.; Konuralp, A., Int. J. non-linear sci. numer. simul., 7, 1, 65, (2006)
[9] Sweilam, N.H.; Khader, M.M., Chaos solitons fractals, 32, 1, 145, (2007)
[10] Soliman, A.A., Chaos solitons fractals, 29, 2, 294, (2006)
[11] Momani, S.; Abuasad, S., Chaos solitons fractals, 27, 5, 1119, (2006)
[12] El-Sayed, S.M.; Kaya, D.; Zarea, S., Int. J. non-linear sci. numer. simul., 5, 2, 105, (2004)
[13] Wazwaz, A., Appl. math. comput., 127, 2-3, 405, (2002)
[14] Al-Khaled, K.; Allan, F., J. appl. math. comput., 19, 415, (2005)
[15] El-Shahed, M., Int. J. non-linear sci. numer. simul., 6, 2, 163, (2005)
[16] Maleknejad, K.; Mahmoudi, Y., Appl. math. comput., 145, 2-3, 641, (2003)
[17] He, J.H., J. comput. appl. math., 207, 1, 3, (2007)
[18] Yusufoglu, E., Int. J. non-linear sci. numer. simul., 8, 2, 152, (2007)
[19] Tari, H.; Ganji, D.D.; Rostamian, M., Int. J. non-linear sci. numer. simul., 8, 2, 203, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.