Decision theory with prospect interference and entanglement. (English) Zbl 1209.91063

Summary: We present a novel variant of decision making based on the mathematical theory of separable Hilbert spaces. This mathematical structure captures the effect of superposition of composite prospects, including many incorporated intentions, which allows us to describe a variety of interesting fallacies and anomalies that have been reported to particularize the decision making of real human beings. The theory characterizes entangled decision making, non-commutativity of subsequent decisions, and intention interference. We demonstrate how the violation of the Savage’s sure-thing principle, known as the disjunction effect, can be explained quantitatively as a result of the interference of intentions, when making decisions under uncertainty. The disjunction effects, observed in experiments, are accurately predicted using a theorem on interference alternation that we derive, which connects aversion-to-uncertainty to the appearance of negative interference terms suppressing the probability of actions. The conjunction fallacy is also explained by the presence of the interference terms. A series of experiments are analyzed and shown to be in excellent agreement with a priori evaluation of interference effects. The conjunction fallacy is also shown to be a sufficient condition for the disjunction effect, and novel experiments testing the combined interplay between the two effects are suggested.


91B06 Decision theory
91B70 Stochastic models in economics
Full Text: DOI arXiv Link


[1] Allais M. (1953) Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’ecole Américaine. Econometrica 21: 503–546 · Zbl 0050.36801
[2] Al-Najjar, N. I., & Weinstein J. (2009). The ambiguity aversion literature: a critical assessment, Kellogg School of Management Working Paper, Northwestern University.
[3] Atmanspacher H. (2003) Mind and matter as asymptotically disjoint inequivalent representations with broken time-reversal symmetry. Biosystems 68: 19–30
[4] Atmanspacher H., Römer H., Walach H. (2002) Weak quantum theory: complementarity and entanglement in physics and beyond. Foundation of Physics 22: 379–406
[5] Bather J. (2000) Decision theory. Wiley, Chichester · Zbl 0952.62008
[6] Barkan R., Danziger S., Ben-Bashat G., Busemeyer J. R. (2005) Framing reference points: The effect of integration and segregation on dynamic inconsistency. Journal of Behaal Decision Making 18: 213–226
[7] Baron J. (1998) Judgement misguided: Intuition and error in public decision-making. Oxford University, Oxford
[8] Bechara A., Damasio H., Damasio A. (2000) Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10: 295–307 · Zbl 1117.91323
[9] Beck F., Eccles J. (1992) Quantum aspects of brain activity and the role of consciousness. Proceedings of National Academy of Sciences of USA, 89: 11357–11361
[10] Bell J. S. (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1: 195–200
[11] Benioff P. A. (1972) Decision procedures in quantum mechanics. Journal of Mathematical Physics 13: 909–915
[12] Benjamin S. C., Hayden P. M. (2001) Multi-player quantum games. Physical Review A 64: 030301
[13] Berger J. O. (1985) Statistical decision theory and bayesian analysis. Springer, New York · Zbl 0572.62008
[14] Bohr N. (1929) Wirkungsquantum und Naturbeschreibung. Naturwissenschaft 17: 483–486 · JFM 55.0510.02
[15] Bohr, N. (1933). Light and life. Nature, 131, 421–423, 457–459. · JFM 59.0803.12
[16] Bohr N. (1937) Kausalität und Komplemetarität. Erkenntnissenscahft 6: 293–303 · Zbl 0016.33804
[17] Bohr N. (1961) La Physique Atomique et la Connaissance Humaine. Gontier, Genève
[18] Buchanan J. T. (1982) Discrete and dynamic decision analysis. Wiley, Chichester · Zbl 0647.90003
[19] Busemeyer J. R., Wang Z., Townsend J. T. (2006) Quantum dynamics of human decision- making. Journal of Mathematical Psychology 50: 220–241 · Zbl 1186.91062
[20] Camerer, C. F., Loewenstein, G., Rabin, R. (eds) (2003) Advances in behavioral economics. Princeton University, Princeton
[21] Chalmers D. (1996) The conscious mind. Oxford University, Oxford · Zbl 0921.00007
[22] Charness, G. B., Levin, D., & Karni, E. (2008). On the conjunction fallacy in probability judgement: New experimental evidence. Department of Economics Working Paper, UCSB. · Zbl 1200.91062
[23] Cohen M., Tallon J. M. (2000) Décision dans le risque et l’incertain: l’apport des modèles non additifs. Revue d’Economie Politique 110: 631–681
[24] Croson R. T. A. (1999) The disjunction effect and reason-based choice in games. Organizational Behavior and Human Decision Processes 80: 118–133
[25] Dickhaut J., McCabe K., Nagode J.C., Rustichini A., Smith K., Pardo J.V. (2003) The impact of the certainty context on the process of choice. Proceedings of National Academy of Sciences of USA 100: 3536–3541
[26] Dieudonné J. (2006) Foundations of modern analysis. Hesperides, London · Zbl 0122.29702
[27] Dirac P. A. M. (1958) The principles of quantum mechanics. Clarendon, Oxford · Zbl 0080.22005
[28] Du J., Li H., Xu X., Shi M., Wu J., Zhou X., Han R. (2002) Experimental realization of quantum games on a quantum computer. Physical review letters 88: 137902
[29] Du J., Xu X., Li H., Zhou X., Han R. (2001) Entanglement playing a dominating role in quantum games. Physics Letters A 289: 9–15 · Zbl 0972.81016
[30] Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780 · Zbl 0012.04201
[31] Eisert J., Wilkens M. (2000) Quantum games. Journal of Modern Optics 47: 2543–2556 · Zbl 1002.81008
[32] Epstein L. G. (1999) A definition of uncertainty aversion. The Review of Economic Studies 66: 579–608 · Zbl 0953.91002
[33] Feller W. (1970) Introduction to probability theory and its applications. Wiley, New York
[34] Fox C., Rogers B., Tversky A. (1996) Option traders exhibit subadditive decision weights. Journal of Risk and Uncertainty 13: 5–17 · Zbl 0861.90037
[35] Frederick S., Loewenstein G., O’Donoghue T. (2002) Time discounting and time preference: A critical review. Journal of Economic Literature 40: 351–401
[36] French S., Insua D. R. (2000) Statistical decision theory. Arnold, London
[37] Frölich H. (1968) Bose condensation of strongly excited longitudinal electric modes. Physics Letters A 26: 402–403
[38] Gilboa I. (1987) Expected utility with purely subjective non-additive probabilities. Journal of Mathematical Economics 16: 65–88 · Zbl 0632.90008
[39] Gilboa I., Schmeidler D. (1989) Maxmin expected utility with non-unique prior. Journal of Mathematical Economics 18: 141–153 · Zbl 0675.90012
[40] Goldenberg L., Vaidman L., Wiesner S. (1999) Quantum gambling. Physical Review Letters 82: 3356–3359 · Zbl 0958.81010
[41] Hagan S., Hameroff S. R., Tuszynski J. A. (2002) Quantum computation in brain microtubules: Decoherence and biological feasibility. Physical Review E 65: 061901
[42] Hastings N. A., Mello J. M. (1978) Decision networks. Wiley, Chichester
[43] Iqbal A., Toor A. H. (2001) Evolutionally stable strategies in quantum games. Physics Letters A 280: 249–256 · Zbl 0984.81017
[44] Johnson N. F. (2001) Playing a quantum game with a corrupted source. Physical Review A 63: 020302
[45] Kaplan S., Garrick B. J. (1981) On the quantitative definition of risk. Risk Analysis 1: 11–27
[46] Kühberger A., Komunska D., Perner J. (2001) The disjunction effect: Does it exist for two-step gambles?. Organizational Behavior and Human Decision Processes 85: 250–264
[47] Lambdin C., Burdsal C. (2007) The disjunction effect reexamined: Relevant methodological issues and the fallacy of unspecified percentage comparisons. Organizational Behavior and Human Decision Processes 103: 268–276
[48] Lee C. F., Johnson N. F. (2003) Efficiency and formalism of quantum games. Physical Review A 67: 022311
[49] Li C. F., Zhang Y. S., Huang Y. F., Guo G. C. (2001) Quantum strategies of quantum measurements. Physics Letters A 280: 257–260 · Zbl 0984.81008
[50] Li S., Taplin J. E., Zhang Y. (2007) The equate-to-differentiate way of seeing the prisoner’s dilemma. Information Sciences 177: 1395–1412 · Zbl 1125.91311
[51] Lindgren B. W. (1971) Elements of decision theory. Macmillan, New York · Zbl 0194.49004
[52] Lockwood M. (1989) Mind, brain and the quantum. Basil Blackwell, Oxford
[53] Machina M. J. (2008) Non-expected utility theory. In: Durlauf S. N., Blume L. E. (eds) The new palgrave dictionary of economics. Macmillan, Basingstoke
[54] Marshall K. T., Oliver R. M. (1995) Decision making and forecasting. McGraw-Hill, New York
[55] Mendelson E. (1965) Introduction to mathematical logic. Van Nostrand, Princeton · Zbl 0915.03002
[56] Meyer D. (1999) Quantum strategies. Physical Review Letters 82: 1052–1055 · Zbl 0958.81007
[57] Montesano A. (2008) Effects of uncertainty aversion on the call option market. Theory and Decision 65: 97–123 · Zbl 1142.91548
[58] Morier D. M., Borgida E. (1984) The conjunction fallacy: A task-specific phenomenon?. Personality Social Psychology Bulletin 10: 243–253
[59] Penrose R. (1989) The emperor’s new mind. Oxford University, Oxford
[60] Pessa E., Vitiello G. (2003) Quantum noise, entanglement and chaos in the quantum field theory of mind-brain states. Mind and Matter 1: 59–79
[61] Primas H. (2003) Time-entanglement between mind and matter. Mind and Matter 1: 81–119
[62] Quiggin J. (1982) A theory of anticipated utility. Journal of Economic Behavior and Organization 3: 323–343
[63] Raiffa H., Schlaifer R. (2000) Applied statistical decision theory. Wiley, New York · Zbl 0952.62008
[64] Rivett P. (1980) Model building for decision analysis. Wiley, Chichester · Zbl 0267.90002
[65] Rottenstreich Y., Tversky A. (1997) Unpacking, repacking and anchoring: Advances in support theory. Psychological Review 104: 406–415
[66] Safra Z., Segal U. (2008) Calibration results for non-expected utility theories. Econometrica 76: 1143–1166 · Zbl 1152.91433
[67] Satinover J. (2001) The quantum brain. Wiley, New York
[68] Savage L. J. (1954) The foundations of statistics. Wiley, New York · Zbl 0055.12604
[69] Schmeidler D. (1989) Subjective probability and expected utility without additivity. Econometrica 57: 571–587 · Zbl 0672.90011
[70] Shafir E. (1994) Uncertainty and the difficulty of thinking through disjunctions. Cognition 50: 403–430
[71] Shafir E., Simonson I., Tversky A. (1993) Reason-based choice. Cognition 49: 11–36
[72] Shafir E., Tversky A. (1992) Thinking through uncertainty: Nonconsequential reasoning and choice. Cognitive Psychology 24: 449–474
[73] Shafir E. B., Smith E. E., Osherson D. N. (1990) Typicality and reasoning fallacies. Memory and Cognition 18: 229–239
[74] Sheremeta, R. M., & Zhang, J. (2009). Can groups solve the problem of over-building in contests? Department of Economics Working Paper, McMaster University.
[75] Shor P. (1997) Polynomial-type algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal of Scientific and Statistical Computing 26: 1484–1494 · Zbl 1005.11065
[76] Simon H. A. (1955) A behavioral model of rational choice. Quarterly Journal of Economics 69: 99–118
[77] Sornette D., Davis A.B., Ide K., Vixie K.R., Pisarenko V., Kamm J.R. (2007) Algorithm for model validation: Theory and applications. Proceedings of National Academy of Sciences of USA 104: 6562–6567
[78] Stapp H. P. (1993) Mind, matter, and quantum mechanics. Springer, Berlin · Zbl 0894.00006
[79] Stapp H. P. (1999) Attention, intention, and will in quantum physics. Journal of Consciousness Studies 6: 143–164
[80] Stuart C. I. J., Takahashi Y., Umezawa H. (1978) On the stability and non-local properties of memory. Journal of Theoretical Biology 71: 605–618
[81] Stuart C. I. J., Takahashi Y., Umezawa H. (1979) Mixed system brain dynamics: Neural memory as a macroscopic ordered state. Foundations of Physics 9: 301–327
[82] Tegmark M. (2000) Importance of quantum decoherence in brain processes. Physical Review E 61: 4194–4205
[83] Tentori K., Bonini N., Osherson D. (2004) The conjunction fallacy: A misunderstanding about conjunction?. Cognitive Science 28: 467–477
[84] Tversky A., Kahneman D. (1973) Availability: A heuristic for judging frequency and probability. Cognitive Psychology 5: 207–232
[85] Tversky A., Kahneman D. (1980) Judgements of and by representativeness. In: Kahneman D., Slovic P., Tversky A. (eds) Judgements under uncertainty: Heuristics and biases. Cambridge University, New York, pp 84–98
[86] Tversky A., Kahneman D. (1983) Extensional versus intuitive reasoning: The conjunction fallacy in probability judgement. Psychological Review 90: 293–315
[87] Tversky A., Koehler D. (1994) Support theory: A nonexistential representation of subjective probability. Psychological Review 101: 547–567 · Zbl 02310229
[88] Tversky A., Shafir E. (1992) The disjunction effect in choice under uncertainty. Psychological Science 3: 305–309
[89] van Enk S. J., Pike R. (2002) Classical rules in quantum games. Physical Review A 66: 024306
[90] Vitiello G. (1995) Dissipation and memory capacity in the quantum brain model. International Journal of Modern Physics B 9: 973–989
[91] von Neumann J. (1955) Mathematical foundations of quantum mechanics. Princeton University, Princeton · Zbl 0064.21503
[92] von Neumann J., Morgenstern O. (1944) Theory of games and economic behavior. Princeton University, Princeton · Zbl 0063.05930
[93] Wells G. L. (1985) The conjunction error and the representativeness heuristic. Social Cognition 3: 266–279
[94] Weirich P. (2001) Decision space. Cambridge University, Cambridge · Zbl 1004.91021
[95] White D. I. (1976) Fundamentals of decision theory. Elsevier, New York · Zbl 0381.90001
[96] Yates J. F., Carlson B. W. (1986) Conjunction errors: Evidence for multiple judgement procedures, including signed summation. Organizational Behavior and Human Decision Processes 37: 230–253
[97] Yukalov V. I. (1975) Causality problem in quantum physics. Philosophical Sciences 18: 145–147
[98] Yukalov V. I. (2003a) Entanglement measure for composite systems. Physical Review Letters 90: 167905 · Zbl 1267.81051
[99] Yukalov V. I. (2003b) Quantifying entanglement production of quantum operations. Physical Review A 68: 022109 · Zbl 1267.81051
[100] Yukalov V. I. (2003c) Evolutional entanglement in nonequilibrium processes. Modern Physics Letters B 17: 95–103 · Zbl 1081.81513
[101] Yukalov V. I., Sornette D. (2008) Quantum decision theory as quantum theory of measurement. Physics Letters A 372: 6867–6871 · Zbl 1227.81109
[102] Yukalov V. I., Sornette D. (2009a) Scheme of thinking quantum systems. Laser Physics Letters 6: 833–839 · Zbl 1188.81037
[103] Yukalov V. I., Sornette D. (2009b) Physics of risk and uncertainty in quantum decision making. European Physical Journal B 71: 533–548 · Zbl 1188.81037
[104] Zeckhauser R. (2006) Investing in the unknown and unknowable. Capitalism and Society 1: 1–39
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.