×

zbMATH — the first resource for mathematics

Approximate finite-dimensional filtering for polynomial states over polynomial observations. (English) Zbl 1209.93149
Summary: The mean-square filtering problem for polynomial system states over polynomial observations is studied proceeding from the general expression for the stochastic Ito differentials of the mean-square estimate and the error variance. In contrast to the previously obtained results, this article deals with the general case of nonlinear polynomial states and observations. As a result, the ItĂ´ differentials for the mean-square estimate and error variance corresponding to the stated filtering problem are first derived. The procedure for obtaining an approximate closed-form finite-dimensional system of the filtering equations for any polynomial state over observations with any polynomial drift is then established. In the example, the obtained closed-form filter is applied to solve the third-order sensor filtering problem for a quadratic state, assuming a conditionally Gaussian initial condition for the extended third-order state vector. The simulation results show that the designed filter yields a reliable and rapidly converging estimate.

MSC:
93E11 Filtering in stochastic control theory
93C10 Nonlinear systems in control theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcorta MA, ICIC Express Letters 2 pp 371– (2008)
[2] Basin MV, New Trends in Optimal Filtering and Control for Polynomial and Time-delay Systems (2008)
[3] Basin MV, International Journal of Innovative Computing, Information and Control 4 pp 2889– (2008)
[4] DOI: 10.1002/acs.1004 · Zbl 1284.93230 · doi:10.1002/acs.1004
[5] Basin M, International Journal of Innovative Computing, Information and Control 4 pp 313– (2008)
[6] DOI: 10.1007/s00034-008-9083-2 · Zbl 1173.93033 · doi:10.1007/s00034-008-9083-2
[7] Benes VE, Stochastics 5 pp 65– (1981) · Zbl 0458.60030 · doi:10.1080/17442508108833174
[8] DOI: 10.1007/PL00009879 · Zbl 0995.93070 · doi:10.1007/PL00009879
[9] DOI: 10.1016/S0167-6911(96)00061-8 · Zbl 0877.93129 · doi:10.1016/S0167-6911(96)00061-8
[10] DOI: 10.1109/TAC.2007.908316 · Zbl 1366.93155 · doi:10.1109/TAC.2007.908316
[11] DOI: 10.1109/TSP.2005.851116 · Zbl 1370.93274 · doi:10.1109/TSP.2005.851116
[12] DOI: 10.1109/TSP.2004.827188 · Zbl 1369.93175 · doi:10.1109/TSP.2004.827188
[13] DOI: 10.1016/0167-6911(83)90074-9 · Zbl 0539.93077 · doi:10.1016/0167-6911(83)90074-9
[14] Jazwinski AH, Stochastic Processes and Filtering Theory (1970) · Zbl 0203.50101
[15] Kalman RE, ASME Transactions, Part D: Journal of Basic Engineering 83 pp 95– (1961)
[16] Kushner HJ, SIAM Journal of Control 12 pp 106– (1964)
[17] DOI: 10.1109/TCSI.2002.807504 · Zbl 1368.93725 · doi:10.1109/TCSI.2002.807504
[18] DOI: 10.1016/0005-1098(96)00067-2 · Zbl 0855.93086 · doi:10.1016/0005-1098(96)00067-2
[19] Oksendal B, Stochastic Differential Equations (2006)
[20] Pugachev VS, Probability Theory and Mathematical Statistics for Engineers (1984)
[21] Pugachev VS, Stochastic Systems: Theory and Applications (2001)
[22] DOI: 10.1109/9.701119 · Zbl 0951.93050 · doi:10.1109/9.701119
[23] DOI: 10.1016/j.automatica.2008.11.009 · Zbl 1162.93039 · doi:10.1016/j.automatica.2008.11.009
[24] Tucker HG, A Graduate Course in Probability (1967)
[25] DOI: 10.1016/j.automatica.2008.10.025 · Zbl 1166.93319 · doi:10.1016/j.automatica.2008.10.025
[26] DOI: 10.1109/TSP.2003.815373 · Zbl 1369.94314 · doi:10.1109/TSP.2003.815373
[27] DOI: 10.1016/j.automatica.2007.09.016 · Zbl 1283.93284 · doi:10.1016/j.automatica.2007.09.016
[28] DOI: 10.1016/j.automatica.2008.10.028 · Zbl 1168.93407 · doi:10.1016/j.automatica.2008.10.028
[29] Wonham WM, SIAM Journal of Control 2 pp 347– (1965)
[30] DOI: 10.1002/(SICI)1099-1239(199605)6:4<297::AID-RNC234>3.0.CO;2-V · Zbl 0851.93030 · doi:10.1002/(SICI)1099-1239(199605)6:4<297::AID-RNC234>3.0.CO;2-V
[31] DOI: 10.1016/S0005-1098(02)00248-0 · Zbl 1012.93063 · doi:10.1016/S0005-1098(02)00248-0
[32] DOI: 10.1007/s00034-005-0921-1 · Zbl 1138.93424 · doi:10.1007/s00034-005-0921-1
[33] DOI: 10.1080/00207170210141815 · Zbl 1010.93101 · doi:10.1080/00207170210141815
[34] Yau SS-T, Journal of Mathematical Systems, Estimation, and Control 4 pp 181– (1994)
[35] DOI: 10.1016/S0893-9659(00)00201-9 · Zbl 0976.93078 · doi:10.1016/S0893-9659(00)00201-9
[36] DOI: 10.1109/TAC.2007.892383 · Zbl 1366.93648 · doi:10.1109/TAC.2007.892383
[37] DOI: 10.1109/TSP.2004.840724 · Zbl 1370.93293 · doi:10.1109/TSP.2004.840724
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.