×

On isometric copies of \(\ell _{\infty }\) and James constants in Cesáro-Orlicz sequence spaces. (English) Zbl 1210.46015

Define on the space \(\ell^0\) of all real sequences the averaging operator \(G:\ell^0\rightarrow\ell^0\) by
\[ Gx(n)=\frac{1}{n}\overset{n}{\underset{i=1}{\sum}}\left|x(i)\right|,\;\;n\in\mathbb{N}. \]
Given any Orlicz function \(\varphi\), the modular \[ I_{\text{ces}_\varphi}(x)=I_\varphi (Gx)=\overset{n}{\underset{i=1}{\sum}}\varphi(Gx(n)) \] defined on \(\ell^0\) is convex and defines the Cesàro-Orlicz sequence space
\[ \text{ces}_\varphi=\{x\in\ell^0: I_{\text{ces}_\varphi}(\lambda x)<\infty \text{ for some }\lambda>0\} \]
with the Luxemburg norm
\[ \left\|x\right\|_{\text{ces}_\varphi}=\inf\{\varepsilon>0:I_{\text{ces}_\varphi}(x/\varepsilon)\leq 1\}=\left\|Gx\right\|_\varphi. \]
First, it is proved that if \(\varphi\) does not satisfy the \(\delta_2\)-condition (a growth condition in a neighbourhood of zero) and the Orlicz class \(\{x: I_\varphi(x)<\infty\}\) is closed under the averaging operator \(G\), then \(\text{ces}_\varphi\) contains an order isometric copy of \(\ell_\infty\). Next, tree conditions such that each of them is equivalent to the fact that the Orlicz class \(\{x:I_\varphi(x)<\infty\}\) is closed under the averaging operator are presented. An example of an Orlicz function \(\varphi\) such that the Orlicz class \(\{x: I_\varphi(x)<\infty\}\) is not closed under the averaging operator and the space \(\text{ces}_\varphi\) contains an order isometric copy of \(\ell_\infty\) is given. Finally, it is proved that, for any natural \(n\geq 2\), the James constants \(J_n^s(\text{ces}_\varphi)\) are equal to \(n\), which means that, for any natural \(n\geq 2\), the Cesàro-Orlicz space is not uniformly non-\(\ell^{(1)}_n\).

MSC:

46B20 Geometry and structure of normed linear spaces
46B45 Banach sequence spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Boyd, D. W., Indices for the Orlicz spaces, Pacific J. Math., 38, 2, 315-323 (1971) · Zbl 0227.46039
[2] Chen, S., Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.), CCCLVI (1996) · Zbl 1089.46500
[3] Cui, Y.; Hudzik, H.; Petrot, N.; Suantai, S.; Szymaszkiewicz, A., Basic topological and geometric properties of Cesàro-Orlicz spaces, Proc. Indian Acad. Sci. Math. Sci., 115, 4, 461-476 (2005) · Zbl 1093.46013
[4] Diestel, J.; Jarchow, A.; Tonge, A., Absolutely Summing Operators (1995), Cambridge University Press · Zbl 0855.47016
[5] Foralewski, P.; Hudzik, H.; Szymaszkiewicz, A., Some remarks on Cesàro-Orlicz sequence spaces, Math. Inequal. Appl., 13, 2, 363-386 (2010) · Zbl 1198.46017
[6] Foralewski, P.; Hudzik, H.; Szymaszkiewicz, A., Local rotundity structure of Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl., 345, 1, 410-419 (2008) · Zbl 1155.46007
[7] Hudzik, H., Banach lattices with order isometric copies of \(l^\infty \), Indag. Math. (N.S.), 9, 521-527 (1998) · Zbl 0919.46015
[8] Hudzik, H.; Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.), 11, 4, 573-585 (2000) · Zbl 1010.46031
[9] Kamińska, A., Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math., 7-8, 347-352 (1982) · Zbl 0513.46008
[11] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1982), Pergamon Press: Pergamon Press Oxford, New York, Toronto, Sydney, Paris, Frankfurt, (translation) · Zbl 0484.46003
[12] Krasnosel’skiĭ, M. A.; Rutickiĭ, Ya. B., Convex Functions and Orlicz Spaces (1961), P. Noorddhoff Ltd.: P. Noorddhoff Ltd. Groningen, (translation) · Zbl 0095.09103
[13] Kubiak, D., A note on Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl., 349, 291-296 (2009) · Zbl 1160.46013
[14] Kufner, A.; Maligranda, L.; Persson, L.-E., Hardy Inequality — About Its History and Related Results (2007), Vydavatelský Servis Publishing House: Vydavatelský Servis Publishing House Pilsen · Zbl 1213.42001
[15] Levinson, N., Generalizations of an inequality of Hardy, Duke Math. J., 31, 389-394 (1964) · Zbl 0126.28101
[16] Lim, S.-K.; Lee, P. Y., An Orlicz extension of Cesàro sequence spaces, Comment. Math. Prace Mat., 28, 117-128 (1988) · Zbl 0746.46016
[17] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces I (1977), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0362.46013
[18] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces II (1979), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0403.46022
[19] Maligranda, L., Indices and interpolation, Dissertationes Math. (Rozprawy Mat.), CCXXXIV (1985) · Zbl 0566.46038
[20] Maligranda, L.; Petrot, N.; Suantai, S., On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces, J. Math. Anal. Appl., 326, 312-331 (2007) · Zbl 1109.46026
[21] Matuszewska, W.; Orlicz, W., On certain properties of \(φ\)-functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8, 439-443 (1960) · Zbl 0101.09001
[22] Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034 (1983), Springer-Verlag · Zbl 0557.46020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.