×

zbMATH — the first resource for mathematics

Semiparametric modeling of labeled-cell kinetics, with application to isotope labeling of erythrocytes. (English) Zbl 1210.62194
Summary: We propose a stochastic model for the kinetics of cells that have been tagged with a chemical label. The proposed model consists of two components: a parametrically specified distribution for the time to incorporation of the label into the cells and a nonparametric survival function reflecting the survival time of the label-cell combination. The target quantity of this modeling approach is the fraction of labeled cells among all cells, viewed as a function of time. Longitudinal measurements of this labeled-cell fraction are available from a recent experiment with folate-labeled red blood cells. The proposed semiparametric model is fitted to these data and some of the implications are explored. The proposed method also includes bootstrap-based inference.

MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
92C50 Medical applications (general)
92C37 Cell biology
62N02 Estimation in survival analysis and censored data
62G05 Nonparametric estimation
62G09 Nonparametric statistical resampling methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barlow, Statistical Inference Under Order Restrictions (1972)
[2] Barosi, Competing models for the analysis of red-cell survival obtained with the Cr-51 labeling technique, Scandinavian Journal of Hematology 31 pp 381– (1983) · doi:10.1111/j.1600-0609.1983.tb00666.x
[3] Bergner, On the stochastic interpretation of cell survival curves, Journal of Theoretical Biology 2 pp 279– (1962) · doi:10.1016/0022-5193(62)90031-0
[4] Buchholz, Intrinsic erythrocyte labeling and attomole pharmacokinetic tracing of C-14-labeled folic acid with accelerator mass spectrometry, Analytical Biochemistry 269 pp 348– (1999) · doi:10.1006/abio.1999.4041
[5] Clifford, The dynamics of folate acid metabolism in an adult given a small tracer dose of 14C-folic acid, Advances in Experimental Medicine and Biology 445 pp 239– (1998) · doi:10.1007/978-1-4899-1959-5_15
[6] Davison, Bootstrap Methods and Their Application (1997) · Zbl 0886.62001 · doi:10.1017/CBO9780511802843
[7] Eubank, Spline Smoothing and Nonparametric Regression (1999)
[8] Fan, Local Polynomial Modeling and Its Applications (1996)
[9] Friedman, The monotone smoothing of scatterplots, Technometrics 26 pp 243– (1984) · doi:10.2307/1267550
[10] Haurie, Modeling complex neutrophil dynamics in the grey collie, Journal of Theoretical Biology 204 pp 505– (2000) · doi:10.1006/jtbi.2000.2034
[11] Hellerstein, Measurement of T-cell kinetics: Recent methodological advances, Immunology Today 20 pp 438– (1999) · doi:10.1016/S0167-5699(99)01529-7
[12] Lai, Strong consistency of least squares estimates in multiple regression II, Journal of Multivariate Analysis 9 pp 343– (1979) · Zbl 0416.62051 · doi:10.1016/0047-259X(79)90093-9
[13] Macallan, Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: Studied in vitro, in animals and in humans, Proceedings of the National Academy of Sciences, USA 95 pp 708– (1998) · doi:10.1073/pnas.95.2.708
[14] Müller, Nonparametric Regression Analysis of Longitudinal Data (1988) · Zbl 0664.62031 · doi:10.1007/978-1-4612-3926-0
[15] Müller, Variable bandwidth kernel estimators of regression curves, Annals of Statistics 15 pp 182– (1987a) · Zbl 0634.62032 · doi:10.1214/aos/1176350260
[16] Müller, Estimation of heteroscedasticity in regression analysis, Annals of Statistics 15 pp 610– (1987b) · Zbl 0632.62040 · doi:10.1214/aos/1176350364
[17] Shemin, The life span of the human red blood cell, Journal of Biological Chemistry 166 pp 627– (1946)
[18] Simonoff, Smoothing Methods in Statistics (1996) · doi:10.1007/978-1-4612-4026-6
[19] Vogel, Accelerator mass spectrometry isotope quantification at attomol sensitivity, Analytical Chemistry 67 pp 353A– (1995) · doi:10.1021/ac00107a714
[20] Wand, Kernel Smoothing (1995) · doi:10.1007/978-1-4899-4493-1
[21] Wu, Asymptotic theory of nonlinear least squares estimation, Annals of Statistics 9 pp 501– (1981) · Zbl 0475.62050 · doi:10.1214/aos/1176345455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.