×

Analytical solutions for uniform potential flow past multiple cylinders. (English) Zbl 1210.76027

Summary: The problem of uniform potential flow past a circular cylinder is a basic one in fluid dynamics and the solution is well-known. In this paper, an analytical construction is presented to generalize this fundamental result to find solutions for steady irrotational uniform flow past a multi-cylinder configuration in a planar flow in the case when the circulations around the obstacles is taken to vanish. More generally, if a conformal mapping from a canonical multiply connected circular region to the unbounded fluid region exterior to a finite collection of non-cylindrical obstacles of more general shape is known, the formulation also provides solutions for the uniform flow past those obstacles.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Van Dyke, M., An album of fluid motion, (1982), Parabolic Press Stanford
[2] Acheson, D.J., Elementary fluid dynamics, (1990), Oxford University Press · Zbl 0719.76001
[3] Batchelor, G., An introduction to fluid dynamics, (1967), Cambridge University Press · Zbl 0152.44402
[4] Hicks, W.M., On the motion of two cylinders in a fluid, Quart. J. pure appl. math., 16, 113-140, (1879), & 193-219 · JFM 11.0676.01
[5] Greenhill, A.G., Functional images in cartesians, Quart. J. pure appl. math., 18, 356-362, (1882) · JFM 14.0864.01
[6] Basset, A.B., Treatise on hydrodynamics, (1888), Deighton Bell & Co, Cambridge · JFM 20.0970.01
[7] Burnside, W., On functions determined from their discontinuities and a certain form of boundary condition, Proc. London math. soc., 22, 346-358, (1891) · JFM 23.0420.01
[8] Burnside, W., On a class of automorphic functions, Proc. London math. soc., 23, 49-88, (1892) · JFM 24.0391.01
[9] Lagally, M., Die reibungslose strömung im aussengebiet zweier kreise, Z. angew. math. mech., 9, 299-305, (1929), English translation: The frictionless flow in the region around two circles, N.A.C.A., Technical Memorandum No 626, 1931 · JFM 55.1127.07
[10] Ferrari, C., Sulla trasformazione conforme di due cerchi in due profili alari, Memoire Della reale accad. Della scienze di Torino, ser. II, 67, (1930) · JFM 59.1448.03
[11] Johnson, E.R.; McDonald, N.R., The motion of a vortex near two circular cylinders, Proc. roy. soc. London ser. A, 460, 939-954, (2004) · Zbl 1109.76014
[12] Burton, D.A.; Gratus, J.; Tucker, R.W., Hydrodynamic forces on two moving discs, Theoret. appl. mech., 31, 153-187, (2004) · Zbl 1106.76015
[13] Yamamoto, T., Hydrodynamic forces on multiple circular cylinders, J. hydraulics division ASCE, 102, 1193-1211, (1976)
[14] Milne-Thomson, L., Theoretical hydrodynamics, (1968), Macmillan · Zbl 0164.55802
[15] Nehari, Z., Conformal mapping, (1952), McGraw-Hill New York · Zbl 0048.31503
[16] Ablowitz, M.J.; Fokas, A.S., Complex variables, (1997), Cambridge University Press · Zbl 0885.30001
[17] Crowdy, D.G.; Marshall, J.S., Analytical formulae for the kirchhoff – routh path function in multiply connected domains, Proc. roy. soc. London ser. A, 461, 2477-2501, (2005) · Zbl 1186.76630
[18] Henrici, P., Applied and computational complex analysis, (1986), Wiley Interscience New York
[19] D.G. Crowdy, Calculating the lift on a finite stack of cylindrical aerofoils, Proc. Roy. Soc. London Ser. A, in press · Zbl 1149.76634
[20] Crowdy, D.G.; Marshall, J.S., The motion of a point vortex around multiple circular islands, Phys. fluids, 17, 056602, (2005) · Zbl 1187.76108
[21] Baker, H., Abelian functions, (1995), Cambridge University Press
[22] Whittaker, E.T.; Watson, G.N., A course of modern analysis, (1927), Cambridge University Press · JFM 53.0180.04
[23] Abramowitz, M.; Stegun, A., Handbook of mathematical functions, (1972), Dover New York · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.