×

zbMATH — the first resource for mathematics

Robust portfolio optimization with derivative insurance guarantees. (English) Zbl 1210.91128
Summary: Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside of the uncertainty set. We propose a novel robust optimization model for designing portfolios that include European-style options. This model trades off weak and strong guarantees on the worst-case portfolio return. The weak guarantee applies as long as the asset returns are realized within the prescribed uncertainty set, while the strong guarantee applies for all possible asset returns. The resulting model constitutes a convex second-order cone program, which is amenable to efficient numerical solution procedures. We evaluate the model using simulated and empirical backtests and analyze the impact of the insurance guarantees on the portfolio performance.

MSC:
91G10 Portfolio theory
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahn, D.; Boudoukh, J.; Richardson, M.; Whitelaw, R.F., Optimal risk management using options, The journal of finance, 54, 1, 359-375, (1999)
[2] Alizadeh, F.; Goldfarb, D., Second-order cone programming, Mathematical programming, 95, 1, 3-51, (2003) · Zbl 1153.90522
[3] Artzner, P.; Delbaen, F.; Eber, J.; Heath, D., Coherent measures of risk, Mathematical finance, 9, 3, 203-228, (1999) · Zbl 0980.91042
[4] Ben-Tal, A.; Boyd, S.; Nemirovski, A., Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems, Mathematical programming, series B, 107, 63-89, (2006) · Zbl 1134.90042
[5] A. Ben-Tal, T. Margalit, A. Nemirovski, Robust modeling of multi-stage portfolio problems, in: H. Frenk, K. Roos, T. Terlaky, S. Zhang (Eds.), High Performance Optimization, 2000, pp. 303-328. · Zbl 1016.91055
[6] Ben-Tal, A.; Nemirovski, A., Robust convex optimization, Mathematics of operations research, 23, 4, 769-805, (1998) · Zbl 0977.90052
[7] Ben-Tal, A.; Nemirovski, A., Robust solutions of uncertain linear programs, Operations research letters, 25, 1, 1-13, (1999) · Zbl 0941.90053
[8] Bertsimas, D.; Brown, D.B., Constructing uncertainty sets for robust linear optimization, Operations research, 57, 6, 1483-1495, (2009) · Zbl 1228.90061
[9] Bertsimas, D.; Pachamanova, D., Robust multiperiod portfolio management in the presence of transaction costs, Computers and operations research, 35, 1, 3-17, (2008) · Zbl 1139.91333
[10] F. Black, R. Litterman, Asset Allocation: Combining Investor Views with Market Equilibrium, Technical Report, 1990.
[11] Black, F.; Scholes, M.S., The pricing of options and corporate liabilities, Journal of political economy, 81, 3, 637-654, (1973) · Zbl 1092.91524
[12] Broadie, M., Computing efficient frontiers using estimated parameters, Annals of operations research, 45, 1, 21-58, (1993) · Zbl 0800.90048
[13] Ceria, S.; Stubbs, R., Incorporating estimation errors into portfolio selection: robust portfolio construction, Journal of asset management, 7, 2, 109-127, (2006)
[14] Chopra, V.K., Improving optimization, Journal of investing, 2, 3, 51-59, (1993)
[15] Chopra, V.K.; Hensel, C.R.; Turner, A.L., Massaging mean – variance inputs: returns from alternative investment strategies in the 1980s, Management science, 39, 7, 845-855, (1993)
[16] Chopra, V.K.; Ziemba, W.T., The effect of errors in means, variances and covariances on optimal portfolio choice, Journal of portfolio management, 19, 2, 6-11, (1993)
[17] Coval, J.; Shumway, T., Expected option returns, The journal of finance, 56, 3, 983-1009, (2002)
[18] DeMiguel, V.; Nogales, F.J., Portfolio selection with robust estimation, Operations research, 57, 3, 560-577, (2009) · Zbl 1233.91240
[19] Dert, C.; Oldenkamp, B., Optimal guaranteed return portfolios and the casino effect, Operations research, 48, 5, 768-775, (2000)
[20] El Ghaoui, L.; Oks, M.; Outstry, F., Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations research, 51, 4, 543-556, (2003) · Zbl 1165.91397
[21] Fabozzi, D.; Kolm, P.; Pachamanova, D., Robust portfolio optimization and management, (2007), Wiley
[22] Goldfarb, D.; Iyengar, G., Robust portfolio selection problems, Mathematics of operations research, 28, 1, 1-38, (2003) · Zbl 1082.90082
[23] Harlow, W.V., Asset allocation in a downside-risk framework, Financial analysts journal, 47, 5, 28-40, (1991)
[24] Howe, M.; Rustem, B.; Selby, M., Minimax hedging strategy, Computational economics, 7, 4, 245-275, (1994) · Zbl 0824.90050
[25] T. Idzorek, A Step-by-Step Guide to the Black-Litterman Model, Technical Report, Duke University, 2002.
[26] Jagannathan, R.; Ma, T., Risk reduction in large portfolios: why imposing the wrong constraints helps, Journal of finance, 58, 4, 1651-1684, (2003)
[27] Lobo, M.S.; Vandenberghe, L.; Boyd, S.; Lebret, H., Applications of second-order cone programming, Linear algebra and its applications, 284, 1, 193-228, (1998) · Zbl 0946.90050
[28] Lucas, A.; Siegmann, A., The effect of shortfall as a risk measure for portfolios with hedge funds, Journal of business finance and accounting, 35, 1-2, 200-226, (2008)
[29] Luenberger, D.G., Investment science, (1998), Oxford University Press Madison Avenue, New York
[30] Lutgens, F.; Sturm, S.; Kolen, A., Robust one-period option hedging, Operations research, 54, 6, 1051-1062, (2006) · Zbl 1167.91373
[31] MacMillan, L.G., Options as a strategic investment, (1992), Prentice Hall
[32] Markowitz, H., Portfolio selection, Journal of finance, 7, 1, 77-91, (1952)
[33] Merton, R.C., Option pricing when underlying stock returns are discontinuous, Journal of financial economics, 3, 1-2, 125-144, (1976) · Zbl 1131.91344
[34] Merton, R.C., On estimating the expected return on the market: an exploratory investigation, Journal of financial economics, 8, 4, 323-361, (1980)
[35] Meucci, A., Risk and asset allocation, (2005), Springer Berlin · Zbl 1102.91067
[36] Michaud, R.O., Efficient asset management: A practical guide to stock portfolio management and asset allocation, (2001), Oxford University Press
[37] Natarajan, K.; Pachamanova, D.; Sim, M., Incorporating asymmetric distributional information in robust value-at-risk optimization, Management science, 54, 3, 573-585, (2008) · Zbl 1142.91593
[38] Rustem, B.; Becker, R.G.; Marty, W., Robust min – max portfolio strategies for rival forecast and risk scenarios, Journal of economic dynamics and control, 24, 11-12, 1591-1621, (2000) · Zbl 0967.91026
[39] Rustem, B.; Howe, M., Algorithms for worst-case design and applications to risk management, (2002), Princeton University Press · Zbl 1140.90013
[40] Sharpe, W.F., Mutual fund performance, The journal of business, 39, 1, 119-138, (1966)
[41] Tütüncü, R.H.; Koenig, M., Robust asset allocation, Annals of operations research, 132, 1-4, 157-187, (2004) · Zbl 1090.90125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.