×

zbMATH — the first resource for mathematics

On generalized symmetric Finsler spaces. (English) Zbl 1211.53090
Authors’ abstract: We study generalized symmetric Finsler spaces. We first study some existence theorems, then we consider their geometric properties and prove that any such space can be written as a coset space of a Lie group with an invariant Finsler metric. Finally we show that each generalized symmetric Finsler space is of finite order and those of even order reduce to symmetric Finsler spaces and hence are Berwaldian.
Reviewer: Radu Miron (Iaşi)

MSC:
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
53C35 Differential geometry of symmetric spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antonelli P.L., Ingarden R.S., Matsumato M.: The Theory of Sprays and Finsler Spaces With Applications in Physics and Biology, FTPH, vol. 58. Kluwer, Dordecht (1993) · Zbl 0821.53001
[2] Bao D., Chern S.S., Shen Z.: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000) · Zbl 0954.53001
[3] Bao D., Robles C., Shen Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377–435 (2004) · Zbl 1078.53073
[4] Cartan E.: Sur une classe remarquable d’espace de Riemann. Bull. soc. Math. France 54, 214–264 (1926) · JFM 52.0425.01
[5] Deng S., Hou Z.: The group of isometries of a Finsler space. Pac. J. Math. 207(1), 149–155 (2002) · Zbl 1055.53055
[6] Deng S., Hou Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A Math. Gen. 37, 8245–8253 (2004) · Zbl 1062.58007
[7] Deng S., Hou Z.: On symmetric Finsler spaces. Israel J. Math. 162, 197–219 (2007) · Zbl 1141.53071
[8] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978) · Zbl 0451.53038
[9] Kim C.W.: Locally symmetric positively curved Finsler spaces. Arch. Math. 88, 376–384 (2007) · Zbl 1126.53050
[10] Kim C.W., Yim J.W.: Finsler manifolds with positive constant flag curvature. Geom. Dedicata 98, 47–56 (2003) · Zbl 1034.53075
[11] Kowalski, O.: Generalized symmetric spaces. In: Lecture Notes in Mathematics. Springer Verlag (1980) · Zbl 0431.53042
[12] Latifi, D., Razavi, A.: On homogeneous Finsler spaces. Rep. Math. Phys. 57, 357–366 (2006). Erratum: Rep. Math. Phys. 60, 347 (2007) · Zbl 1137.53339
[13] Latifi, D.: Homogeneous geodesics of left invariant Finsler metrics. Math. DG/0711.4480 · Zbl 1201.53079
[14] Ledger A.J., Obata M.: Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968) · Zbl 0177.24602
[15] Ledger A.J.: Espaces de Riemann symetriques generalises. C. R. Acad. Sc. Paris 264, 947–948 (1967) · Zbl 0147.40601
[16] Loos O.: Symmetric Spaces I, General Theory. Benjamin, New York (1969) · Zbl 0175.48601
[17] Razavi, A.: Workshop on Finsler Geometry and its Applications. Balatonföldvár, Hungary, 28 May–2 June 2007
[18] Spiro A.: Chern’orthonormal frame bundle of a Finsler space. Houst. J. Math. 25, 641–659 (1999) · Zbl 0992.53022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.