Cheng, H. D.; Guo, Yanhui; Zhang, Yingtao A novel image segmentation approach based on neutrosophic set and improved fuzzy c-means algorithm. (English) Zbl 1211.68480 New Math. Nat. Comput. 7, No. 1, 155-171 (2011). MSC: 68U10 Computing methodologies for image processing 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory Keywords:image segmentation; fuzzy clustering; neutrosophic set; indeterminacy PDF BibTeX XML Cite \textit{H. D. Cheng} et al., New Math. Nat. Comput. 7, No. 1, 155--171 (2011; Zbl 1211.68480) Full Text: DOI References: [1] DOI: 10.1016/S0031-3203(00)00149-7 · Zbl 0991.68137 · doi:10.1016/S0031-3203(00)00149-7 [2] DOI: 10.1118/1.597000 · doi:10.1118/1.597000 [3] DOI: 10.1006/gmip.1996.0021 · Zbl 05473573 · doi:10.1006/gmip.1996.0021 [4] DOI: 10.1080/01969727308546046 · Zbl 0291.68033 · doi:10.1080/01969727308546046 [5] DOI: 10.1007/978-1-4757-0450-1 · doi:10.1007/978-1-4757-0450-1 [6] DOI: 10.1016/S0167-8655(98)00121-4 · Zbl 0920.68148 · doi:10.1016/S0167-8655(98)00121-4 [7] DOI: 10.1016/S0019-9958(65)90241-X · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X [8] Wang H., Interval Neutrosophic Sets and Logic: Theory and Applications in Computing (2005) · Zbl 1070.03500 [9] Smarandache F., A Unifying Field in Logics Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability (2003) · Zbl 1035.03500 [10] DOI: 10.1016/j.patcog.2008.10.002 · Zbl 1178.68492 · doi:10.1016/j.patcog.2008.10.002 [11] DOI: 10.1142/S1793005708001082 · doi:10.1142/S1793005708001082 [12] DOI: 10.1142/S1793005709001490 · Zbl 1187.68654 · doi:10.1142/S1793005709001490 [13] Anderberg M. R., Cluster Analysis for Applications (1973) · Zbl 0299.62029 [14] Duda R. O., Pattern Classification (2000) [15] DOI: 10.1016/j.patcog.2007.02.005 · Zbl 1118.68735 · doi:10.1016/j.patcog.2007.02.005 [16] Otsu N., IEEE Transation on System, Man and Cybernetics 9 pp 62– · doi:10.1109/TSMC.1979.4310076 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.