×

zbMATH — the first resource for mathematics

The truncated core for games with upper bounds. (English) Zbl 1211.91029
Summary: We define and study games with upper bounds. In one of these games there are upper bounds on the possible payoffs for some coalitions. These restrictions require adjustments in the definitions of solution concepts. In the current paper we study the effect of the restrictions on the core and define and study the so-called truncated core.

MSC:
91A12 Cooperative games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergantiños G, Vidal-Puga JJ (2007) The optimistic TU game in minimun cost spanning tree problems. Int J Game Theor 36: 223–239 · Zbl 1138.91006 · doi:10.1007/s00182-006-0069-7
[2] Bird CG (1976) On cost allocation for a spanning tree: a game theoretic approach. Networks 6: 335–350 · Zbl 0357.90083 · doi:10.1002/net.3230060404
[3] Bondareva ON (1963) Certain applications of the methods of linear programming to the theory of cooperative games (In Russian). Problemy Kibernet 10: 119–139 · Zbl 1013.91501
[4] Branzei R, Dimitrov D, Pickl S, Tijs S (2004) How to cope with division problems under interval uncertainty of claims? Int J Uncertain Fuzz Knowl Based Syst 12: 191–200 · Zbl 1101.91055 · doi:10.1142/S021848850400276X
[5] Carpente L, Casas-Méndez B, García-Jurado I, van den Nouweland A (2008) Coalitional interval games for strategic games in which players cooperate. Theor Decis 65: 253–269 · Zbl 1162.91309 · doi:10.1007/s11238-007-9091-x
[6] Chun Y (2006) A pessimistic approach to the queueing problem. Math Social Sci 51: 171–181 · Zbl 1162.91311 · doi:10.1016/j.mathsocsci.2005.08.002
[7] Davis M, Maschler M (1965) The kernel of a cooperative game. Nav Res Log Q 12: 223–259 · Zbl 0204.20202 · doi:10.1002/nav.3800120303
[8] Fernández FR, Hinojosa MA, Puerto J (2002) Core solutions in vector-valued games. J Optim Theor Appl 112/2: 331–360 · Zbl 1005.91016 · doi:10.1023/A:1013606007132
[9] Maniquet F (2003) A characterization of the Shapley value in queueing problems. J Econ Theor 109: 90–103 · Zbl 1032.91020 · doi:10.1016/S0022-0531(02)00036-4
[10] Peleg B (1986) On the reduced game property and its converse. Int J Game Theor 15: 187–200 · Zbl 0629.90099 · doi:10.1007/BF01769258
[11] Shapley LS (1953) A value for n-person games. In: Kuhn H, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317
[12] Shapley LS (1967) On balanced sets and cores. Nav Res Log Q 14: 453–460 · doi:10.1002/nav.3800140404
[13] Voorneveld M, Van den Nouweland A (1998) A new axiomatization of the core of games with transferable utility. Econ Lett 60: 151–155 · Zbl 0914.90278 · doi:10.1016/S0165-1765(98)00107-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.