×

Approximate controllability of second-order stochastic differential equations with impulsive effects. (English) Zbl 1211.93026

Summary: Many practical systems in physical and biological sciences have impulsive dynamical behaviors during the evolution process which can be modeled by impulsive differential equations. In this paper, the approximate controllability of nonlinear second-order stochastic infinite-dimensional dynamical systems with impulsive effects is considered. By using Hölder’s inequality, stochastic analysis and fixed point strategy, a new set of necessary and sufficient conditions are formulated which guarantees the approximate controllability of the nonlinear second-order stochastic system. The results are obtained under the assumption that the associated linear system is approximately controllable.

MSC:

93B05 Controllability
93E03 Stochastic systems in control theory (general)
93C20 Control/observation systems governed by partial differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jde.2009.03.004 · Zbl 1171.34052 · doi:10.1016/j.jde.2009.03.004
[2] DOI: 10.1137/S0363012994260970 · Zbl 0873.93076 · doi:10.1137/S0363012994260970
[3] DOI: 10.1006/jmaa.2000.7234 · Zbl 0982.93018 · doi:10.1006/jmaa.2000.7234
[4] DOI: 10.1016/j.jmaa.2005.12.005 · Zbl 1118.93007 · doi:10.1016/j.jmaa.2005.12.005
[5] DOI: 10.1007/s00245-002-0744-4 · Zbl 1024.47025 · doi:10.1007/s00245-002-0744-4
[6] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[7] DOI: 10.1017/CBO9780511543210 · doi:10.1017/CBO9780511543210
[8] Fattorini H. O., North Holland Mathematics Studies 108, in: Second order linear differential equations in Banach spaces (1985) · Zbl 0564.34063
[9] DOI: 10.1007/978-1-4612-4342-7 · doi:10.1007/978-1-4612-4342-7
[10] DOI: 10.1007/978-94-015-8084-7 · doi:10.1007/978-94-015-8084-7
[11] DOI: 10.1109/TAC.1977.1101615 · Zbl 0363.93048 · doi:10.1109/TAC.1977.1101615
[12] DOI: 10.1016/j.amc.2008.08.059 · Zbl 1167.93008 · doi:10.1016/j.amc.2008.08.059
[13] Klamka J., Int. J. Appl. Math. Comput. Sci. 19 pp 39–
[14] DOI: 10.1007/s11071-008-9389-4 · Zbl 1170.93009 · doi:10.1007/s11071-008-9389-4
[15] Liu K., Stability of Infinite Dimensional Stochastic Differential Equations with Applications (2006) · Zbl 1085.60003
[16] DOI: 10.1109/9.920790 · Zbl 1031.93034 · doi:10.1109/9.920790
[17] DOI: 10.1137/S0363012901391688 · Zbl 1084.93006 · doi:10.1137/S0363012901391688
[18] Mahmudov N. I., Int. J. Control 46 pp 724–
[19] DOI: 10.1080/00207170500207180 · Zbl 1097.93034 · doi:10.1080/00207170500207180
[20] Mahmudov N. I., J. Math. Anal. Appl. 78 pp 997–
[21] DOI: 10.1006/jmaa.2000.7386 · Zbl 1031.93032 · doi:10.1006/jmaa.2000.7386
[22] Muthukumar P., J. Franklin Inst. 46 pp 65–
[23] Respondek J. S., Int. J. Appl. Math. Comput. Sci. 18 pp 199–
[24] DOI: 10.1080/00207170500197605 · Zbl 1108.93021 · doi:10.1080/00207170500197605
[25] DOI: 10.1142/2892 · doi:10.1142/2892
[26] DOI: 10.1080/00207170802291429 · Zbl 1165.93013 · doi:10.1080/00207170802291429
[27] DOI: 10.1016/j.na.2008.10.029 · Zbl 1177.34080 · doi:10.1016/j.na.2008.10.029
[28] Travis C. C., Acta Math. Acad. Sci. Hungaricae 32 pp 76–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.