×

zbMATH — the first resource for mathematics

On distance and correlation measures of hesitant fuzzy information. (English) Zbl 1211.94062
Summary: A hesitant fuzzy set, allowing the membership of an element to be a set of several possible values, is very useful to express people’s hesitancy in daily life. In this paper, we define the distance and correlation measures for hesitant fuzzy information and then discuss their properties in detail. These measures are all defined under the assumption that the values in all hesitant fuzzy elements (the fundamental units of hesitant fuzzy sets) are arranged in an increasing order and two hesitant fuzzy elements have the same length when we compare them. We can find that the results, by using the developed distance measures, are the smallest ones among those when the values in two hesitant fuzzy elements are arranged in any permutations. In addition, the derived correlation coefficients are based on different linear relationships and may have different results.

MSC:
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liu, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets Syst 52 pp 305– (1992) · Zbl 0782.94026 · doi:10.1016/0165-0114(92)90239-Z
[2] Turksen, An approximate analogical reasoning approach based on similarity measures, IEEE Trans Syst Man Cybern 18 pp 1049– (1988) · doi:10.1109/21.23107
[3] Candan, Similarity-based ranking and query processing in multimedia databases, Data Knowl Eng 35 pp 259– (2000) · Zbl 0948.68058 · doi:10.1016/S0169-023X(00)00025-2
[4] Zadeh, Fuzzy sets, Inf Control 8 pp 338– (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[5] Diamond, Metric spaces of fuzzy sets theory and applications (1994) · Zbl 0873.54019 · doi:10.1142/2326
[6] Kacprzyk, Multistage fuzzy control (1997)
[7] Chaudhuri, A modified Hausdor distance between fuzzy sets, Inf Sci 118 pp 159– (1999) · Zbl 0946.68126 · doi:10.1016/S0020-0255(99)00037-7
[8] Xu, An overview of distance and similarity measures of intuitionistic fuzzy sets, Int J Uncertain Fuzziness Knowl-Based Syst 16 pp 529– (2008) · Zbl 1154.03317 · doi:10.1142/S0218488508005406
[9] Grzegorzewski, Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric, Fuzzy Sets Syst 148 pp 319– (2004) · Zbl 1056.03031 · doi:10.1016/j.fss.2003.08.005
[10] Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst 20 pp 87– (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[11] Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Part 1, Inf Sci 8 pp 199– (1975) · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[12] Xu, Deviation measures of linguistic preference relations in group decision making, Omega 17 pp 432– (2005)
[13] Szmidt, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst 114 pp 505– (2000) · Zbl 0961.03050 · doi:10.1016/S0165-0114(98)00244-9
[14] Xu, Choquet integrals of weighted intuitionistic fuzzy information, Inf Sci 180 pp 726– (2010) · Zbl 1186.68469 · doi:10.1016/j.ins.2009.11.011
[15] Szmidt, Correlation of intuitionistic fuzzy sets. Computational Intelligence For Knowledge-based Systems Design, Lecture Notes in Computer Science 6178 pp 169– (2010) · Zbl 05768354 · doi:10.1007/978-3-642-14049-5_18
[16] Hung, A note on the correlation on fuzzy numbers by expected interval, Int J Uncertain Fuzziness Knowl-Based Syst 9 pp 517– (2001) · Zbl 1113.03339 · doi:10.1016/S0218-4885(01)00092-2
[17] Hong, Fuzzy measures for a correlation coefficient of fuzzy numbers under (the weakest t-norm)-based fuzzy arithmetic operations, Inf Sci 176 pp 150– (2006) · Zbl 1075.03025 · doi:10.1016/j.ins.2004.11.005
[18] Gerstenkorn, Correlation of intuitionistic fuzzy sets, Fuzzy Sets Syst 44 pp 39– (1991) · Zbl 0742.04008 · doi:10.1016/0165-0114(91)90031-K
[19] Bustince, Correlation of interval-valued intuitionistic fuzzy sets, Fuzzy Sets Syst 74 pp 237– (1995) · Zbl 0875.94156 · doi:10.1016/0165-0114(94)00343-6
[20] Hung, Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets, Int J Uncertain Fuzziness Knowl-Based Syst 9 pp 509– (2001) · Zbl 1113.03338 · doi:10.1016/S0218-4885(01)00091-0
[21] Mitchell, A correlation coefficient for intuitionistic fuzzy sets, Int J Intell Syst 19 pp 483– (2004) · Zbl 1056.03033 · doi:10.1002/int.20004
[22] Hung, Correlation of intuitionistic fuzzy sets by centroid method, Inf Sci 144 pp 219– (2002) · Zbl 1013.03067 · doi:10.1016/S0020-0255(02)00181-0
[23] Xu, On correlation measures of intuitionistic fuzzy sets, Lecture Notes in Computer Science 4224 pp 16– (2006) · doi:10.1007/11875581_2
[24] Xu, Clustering algorithm for intuitionistic fuzzy sets, Inf Sci 178 pp 3775– (2008) · Zbl 1256.62040 · doi:10.1016/j.ins.2008.06.008
[25] Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optim Decis Making. 6 pp 109– (2007) · Zbl 1158.03319 · doi:10.1007/s10700-007-9004-z
[26] Torra, Proc 18th IEEE Int Conf on Fuzzy Systems pp 1378– (2009)
[27] Dubois, Fuzzy sets and systems: Theory and applications (1980) · Zbl 0444.94049
[28] Xia, Hesitant fuzzy information aggregation in decision making, Int J Approx Reason 52 pp 395– (2011) · Zbl 1217.68216 · doi:10.1016/j.ijar.2010.09.002
[29] Xu, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. (2011) · Zbl 1219.03064 · doi:10.1016/j.ins.2011.01.028
[30] Yager, On the theory of bags, Int J Gen Syst 13 pp 23– (1986) · doi:10.1080/03081078608934952
[31] Torra, Hesitant Fuzzy Sets, Int J Intell Syst 25 pp 529– (2010) · Zbl 1198.03076
[32] Szmidt, A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. Artificial Intelligence and Soft Computing-ICAISC 2004, Lecture Notes in Computer Science 3070 pp 388– (2004) · Zbl 1058.68667 · doi:10.1007/978-3-540-24844-6_56
[33] Merig√≥, Induced aggregation operators in decision making with the Dempster-Shafer belief structure, Int J Intell Syst 24 pp 934– (2009) · Zbl 1176.68202 · doi:10.1002/int.20368
[34] Chen, Determining objective weights with intuitionistic fuzzy entropy measures: A comparative analysis, Inf Sci 180 pp 4207– (2010) · Zbl 05842566 · doi:10.1016/j.ins.2010.07.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.