×

Very singular diffusion equations: second and fourth order problems. (English) Zbl 1213.35274

Summary: This paper studies singular diffusion equations whose diffusion effect is so strong that the speed of evolution becomes a nonlocal quantity. Typical examples include the total variation flow as well as crystalline flow which are formally of second order. This paper includes fourth order models which are less studied compared with second order models. A typical example of this model is an \(H ^{ - 1}\) gradient flow of total variation. It turns out that such a flow is quite different from the second order total variation flow. For example, we prove by giving an explicit example that the solution may instantaneously develop a jump discontinuity for the fourth order total variation flow.

MSC:

35K67 Singular parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
74N05 Crystals in solids
62H35 Image analysis in multivariate analysis
35K59 Quasilinear parabolic equations
35K25 Higher-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Alexandrov A.D.: Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ. 11, 5–17 (1956)
[2] Almgren F., Taylor J.R., Wang L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31, 387–438 (1993) · Zbl 0783.35002
[3] Andreu-Vaillo F., Ballester C., Caselles V., Mazón J.M.: The Dirichlet problem for the total variation flow. J. Funct. Anal. 180, 347–403 (2001) · Zbl 0973.35109
[4] Andreu-Vaillo F., Caselles V., Mazón J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Birkhäuser, Basel (2004) · Zbl 1053.35002
[5] Angenent S.B., Gurtin M.E.: Multiphase thermomechanics with interfacial structure. Part 2: evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323–391 (1989) · Zbl 0723.73017
[6] Attouch, H., Damlamian, A.: Application des méthodes de convexité et monotone à l’étude de certaines équations quasi linéaires, Proc. Roy. Soc. Edinburgh Sect., A 79, 107–129 (1977/78)
[7] Barrett J.W., Feng X., Prohl A.: On p-harmonic map heat flows for 1 p < and their finite element approximations. SIAM J. Math. Anal. 40, 1471–1498 (2008) · Zbl 1182.35154
[8] Bellettini G., Caselles V., Chambolle A., Novaga M.: Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179, 109–152 (2006) · Zbl 1148.53049
[9] Bellettini G., Goglione R., Novaga M.: Approximation to driven motion by crystalline curvature in two dimensions. Adv. Math. Sci. Appl. 10, 467–493 (2000) · Zbl 0979.53075
[10] Bellettini, G., Mugnai, L.: Anisotropic geometric functional and gradient flows. In: Nonlocal and Abstract Parabolic Equations and Their Application, vol. 86, pp. 21–43. Banach Center Publications, Warsaw (2009) · Zbl 1189.53063
[11] Bellettini G., Novaga M.: Approximation and comparison for nonsmooth anisotropic motion by mean curvature in R N . Math. Models Methods Appl. Sci. 10, 1–10 (2000) · Zbl 1016.53048
[12] Bellettini G., Novaga M., Paolini M.: Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces Free Bound. 1, 39–55 (1999) · Zbl 0934.49023
[13] Bellettini G., Novaga M., Paolini M.: Characterization of facet breaking for nonsmooth mean curvature flow in the convex case. Interfaces Free Bound. 3, 415–446 (2001) · Zbl 0989.35127
[14] Bellettini G., Novaga M., Paolini M.: On a crystalline variational problem. Part II: BV regularity and structure of minimizers on facets. Arch. Ration. Mech. Anal. 157, 193–217 (2001) · Zbl 0976.58017
[15] Bernoff A.J., Bertozzi A.L., Witelski T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93, 725–776 (1998) · Zbl 0951.74007
[16] Brenier Y.: Une application de la symétrisation de Steiner aux équations hyperboliques : la méthode de transport et écroulement. C. R. Acad. Sci. Paris Sér I. Math. 292, 563–566 (1981) · Zbl 0459.35006
[17] Brenier Y.: Résolution d’équations d’évolution quasilinéaires en dimention N d’espace à l’aide d’équations linéaires en dimension N + 1. J. Differ. Equ. 50, 375–390 (1983) · Zbl 0549.35055
[18] Brenier Y.: L 2 formulation of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 193, 1–19 (2009) · Zbl 1180.35346
[19] Brezis H.: Operatures Maximaux Monotone. North-Holland, Amsterdam (1973)
[20] Chambolle A., Lions P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997) · Zbl 0874.68299
[21] Cahn J.W., Elliott C.M., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996) · Zbl 0861.35039
[22] Cahn J.W., Taylor J.: Surface motion by surface diffusion. Acta Metall. Mater. 42, 1045–1063 (1994)
[23] Carrillo J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147, 269–361 (1999) · Zbl 0935.35056
[24] Carter W.C., Roosen A.R., Cahn J.W., Taylor J.E.: Shape evolution by surface diffusion and surface attachment limited kinetics on completely faceted surfaces. Acta. Metall. Mater. 43, 4309–4323 (1995)
[25] Chen Y.-G., Giga Y., Goto S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991) · Zbl 0696.35087
[26] Chou K.-S.: A blow-up criterion for the curve shortening flow by surface diffusion. Hokkaido Math. J. 32, 1–19 (2003) · Zbl 1054.35105
[27] Chung, K.-Y.: On variational schemes modeling surface diffusion. PhD dissertation, Princeton University (1997)
[28] Crandall M., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992) · Zbl 0755.35015
[29] Elliott C.M., Maier-Paape S.: Losing a graph with surface diffusion. Hokkaido Math. J. 30, 297–305 (2001) · Zbl 0993.35042
[30] Elliott C.M., Smitheman S.A.: Analysis of the TV regularization and H fidelity model for decomposing an image into cartoon plus texture. Commun. Pure Appl. Anal. 6, 917–936 (2007) · Zbl 1148.35329
[31] Elliott C.M., Smitheman S.A.: Numerical analysis of the TV regularization and H fidelity model for decomposing an image into cartoon plus texture. IMA J. Numer. Anal. 29, 651–689 (2009) · Zbl 1169.94003
[32] Escher J., Mayer U.F., Simonett G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29, 1419–1433 (1998) · Zbl 0912.35161
[33] Evans L.C., Feldman M., Gariepy R.F.: Fast/slow diffusion and collapsing sandpiles. J. Differ. Equ. 137, 166–209 (1997) · Zbl 0879.35019
[34] Evans L.C., Spruck J.: Motion of level sets by mean curvature, I. J. Differ. Geom. 33, 635–681 (1991) · Zbl 0726.53029
[35] Fukui, T., Giga, Y.: Motion of a graph by nonsmooth weighted curvature. In: Lakshmikantham, V. (ed.) World Congress of Nonlinear Analysts ’92, vol. I, pp. 47–56. Walter de Gruyter, Berlin (1996) · Zbl 0860.35061
[36] Giacomelli, L., Moll, S.: Rotationally symmetric 1-harmonic flows D 2 to S 2 local well-posedness and finite time blow up. SIAM J. Math. Anal. (to appear) · Zbl 1230.35046
[37] Giga M.-H., Giga Y.: Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141, 117–198 (1998) · Zbl 0896.35069
[38] Giga, M.-H., Giga, Y.: A subdifferential interpretation of crystalline motion under nonuniform driving force. In: Chen, W.-X., Hu, S.-C. (eds.) Proceedings of the International Conference in Dynamical Systems and Differential Equations, Springfield Missouri, (1996). Dynamical Systems and Differential Equations, Southwest Missouri University, vol. 1, pp. 276–287 (1998) · Zbl 1304.35674
[39] Giga M.-H., Giga Y.: Stability for evolving graphs by nonlocal weighted curvature. Commun. Partial Differ. Equ. 24, 109–184 (1999) · Zbl 0924.35177
[40] Giga M.-H., Giga Y.: Generalized motion by nonlocal curvature in the plane. Arch. Ration. Mech. Anal. 159, 295–333 (2001) · Zbl 1004.35075
[41] Giga, M.-H., Giga, Y.: A PDE approach for motion of phase-boundaries by a singular interfacial energy. In: Funaki, T., Osada, H. (eds.) Stochastic Analysis on Large Scale Interacting System. Advanced Studies in Pure Math., vol. 39, pp. 213–232. Math. Soc. Japan (2004) · Zbl 1130.35322
[42] Giga, M.-H., Giga, Y.: Minimal vertical singular diffusion preventing overturning for the Burgers equation. In: Recent Advances in Scientific Computing and Partial Differential Equations. Contemp. Math., vol. 330, pp.73–88. Amer. Math. Soc., Providence (2003) · Zbl 1175.35123
[43] Giga M.-H., Giga Y., Hontani H.: Self-similar expanding solutions in a sector for a crystalline flow. SIAM J. Math. Anal. 37, 1207–1226 (2005) · Zbl 1093.74048
[44] Giga, M.-H., Giga, Y., Ochiai, Y.: A crystalline flow starting from a general polygon. In preparation
[45] Giga, M.-H., Giga, Y., Kobayashi, R.: Very singular diffusion equations. In: Maruyama, M., Sunada, T. (eds.) Adv. Studies in Pure Math., vol. 31, pp. 93–125. Taniguchi Conference on Mathematics Nara ’98 (2001) · Zbl 1002.35074
[46] Giga, M.-H., Giga, Y., Rybka, P.: A comparison principle for singular diffusion equations with spatially inhomonegeous driving force. In preparation · Zbl 1290.35023
[47] Giga Y.: Anisotropic curvature effects in interface dynamics. Sugaku Expositions 16, 135–152 (2003) Translation from Sūgaku 52:113–127
[48] Giga, Y.: Singular diffusivity–facets, shocks and more. In: Hill, J.M., Moore, R. (eds.) Applied Math Entering the 21th Century, pp. 121–138. ICIAM 2003 Sydney. SIAM, Philadelphia (2004) · Zbl 1144.35300
[49] Giga Y.: Viscosity solutions with shocks. Commun. Pure Appl. Math. 55, 431–480 (2002) · Zbl 1028.35044
[50] Giga Y.: Surface Evolution Equations–A Level Set Approach. Birkhäuser, Basel (2006) · Zbl 1096.53039
[51] Giga Y., Gurtin M.E., Matias J.: On the dynamics of crystalline motions. Jpn. J. Indust. Appl. Math. 151, 7–50 (1998) · Zbl 1306.74038
[52] Giga Y., Górka P., Rybka P.: Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete Contin. Dyn. Syst. 26, 493–519 (2010) · Zbl 1183.49028
[53] Giga Y., Ito K.: On pinching of curves moved by surface diffusion. Commun. Appl. Anal. 2, 393–405 (1998) · Zbl 0894.35049
[54] Giga, Y., Ito, K.: Loss of convexity of simple closed curves moved by surface diffusion. In: Escher, J., Simonett, G. (eds.) Topics in Nonlinear Analysis, The Herbert Amann Aniversary Volume. Progress in Nonlinear Differential Equations, vol. 35, pp. 305–320. Birkhäuser, Basel (1999) · Zbl 0921.35072
[55] Giga, Y., Kashima, Y., Yamazaki, N.: Local solvability of a constrained gradient system of total variation. Abstr. Appl. Anal., pp. 651–682 (2004) · Zbl 1068.35054
[56] Giga Y., Kobayashi R.: On constrained equations with singular diffusivity. Methods Appl. Anal. 10, 253–277 (2003) · Zbl 1058.58006
[57] Giga, Y., Kohn, R.V.: Scale-invariant extinction time estimates for some singular diffusion equations. Discrete Contin. Dyn. Syst. (to appear) · Zbl 1223.35211
[58] Giga Y., Kuroda H.: On breakdown of solutions of a constrained gradient system of total variation, Bol. Soc. Parana. Mat. (3) 22, 9–20 (2004) · Zbl 1064.35084
[59] Giga Y., Miyakawa T.: A kinetic construction of slobal solutions of first order quasilinear equations. Duke Math. J. 50, 505–515 (1983) · Zbl 0519.35053
[60] Giga Y., Miyakawa T., Oharu S.: A kinetic approach to general first order quasilinear equations. Trans. Am. Math. Soc. 287, 723–743 (1987) · Zbl 0568.35063
[61] Giga Y., Ohtsuka T., Schätzle R.: On a uniform approximation of motion by anisotropic curvature by the Allen-Cahn equations. Interfaces Free Bound. 8, 317–348 (2006) · Zbl 1106.35060
[62] Giga Y., Rybka P.: Facet bending in the driven crystalline curvature flow in the plane. J. Geom. Anal. 18, 109–147 (2008) · Zbl 1146.53037
[63] Giga Y., Rybka P.: Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term. J. Differ. Equ. 246, 2264–2303 (2009) · Zbl 1183.53061
[64] Giga Y., Paolini M., Rybka P.: On the motion by singular interfacial energy. Jpn. J. Indust. Appl. Math. 18, 231–248 (2001) · Zbl 0984.35090
[65] Giga Y., Zhai J.: Uniqueness of constant weakly anisotropic mean curvature immersion of sphere S 2 in R 3. Adv. Differ. Equ. 14, 601–619 (2009) · Zbl 1183.53053
[66] Hardt R., Zhou X.: An evolution problem for linear growth functionals. Commun. Partial Differ. Equ. 19, 1879–1907 (1994) · Zbl 0811.35061
[67] He Y., Li H., Ma H., Ge J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58, 853–868 (2009) · Zbl 1166.53035
[68] He Y., Li H.: Anisotropic version of a theorem of H. Hopf. Ann. Glob. Anal. Geom. 35, 243–247 (2009) · Zbl 1168.53028
[69] Ishiwata T.: Motion of non-convex polygons by crystalline curvature and almost convexity phenomena. Jpn. J. Indust. Appl. Math. 25, 233–253 (2008) · Zbl 1155.53033
[70] Ito, A., Gokieli, M., Niezgódka, M., Szpindler, M.: Mathematical analysis of approximate system for one-dimensional grain boundary motion of Kobayashi-Warren-Carter type. Preprint
[71] Ito A., Kenmochi N., Yamazaki N.: A phase-field model of grain boundary motion. Appl. Math. 53, 433–454 (2008) · Zbl 1199.35138
[72] Ito A., Kenmochi N., Yamazaki N.: Weak solutions of grain boundary motion model with singularity. Rend. Mat. Appl. (7) 29, 51–63 (2009) · Zbl 1183.35159
[73] Kobayashi R., Giga Y.: Equations with singular diffusivity. J. Stat. Phys. 95, 1187–1220 (1999) · Zbl 0952.74014
[74] Kobayashi R., Warren J.A., Carter W.C.: A continuum model of grain boundaries. Physica D 140, 141–150 (2000) · Zbl 0956.35123
[75] Kashima Y.: A subdifferential formulation of fourth order singular diffusion equations. Adv. Math. Sci. Appl. 14, 49–74 (2004) · Zbl 1067.35039
[76] Kawohl B., Lachand-Robert Th.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225, 103–118 (2006) · Zbl 1133.52002
[77] Kawohl B., Schuricht F.: Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9, 515–543 (2007) · Zbl 1146.35023
[78] Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980) · Zbl 0457.35001
[79] Kohn R.V., Serfaty S.: A deterministic-control-based approach to motion by curvature. Commun. Pure Appl. Math. 59, 344–407 (2006) · Zbl 1206.53072
[80] Kohn R.V., Serfaty S.: A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. Commun. Pure. Appl. Math. 63, 1298–1350 (2010) · Zbl 1204.35070
[81] Koiso M., Palmer B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54, 1817–1852 (2005) · Zbl 1120.58010
[82] Koiso M., Palmer B.: Stability of anisotropic capillary surfaces between two parallel planes. Calc. Var. Partial Differ. Equ. 25, 275–298 (2006) · Zbl 1095.76019
[83] Koiso M., Palmer B.: Anisotropic umblic points and Hopf’s Theorem for surface with constant anisotropic mean curvature. Indiana Univ. Math. J. 59, 79–90 (2010) · Zbl 1209.53050
[84] Kōmura Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967) · Zbl 0163.38302
[85] Kruzhkov S.N.: First order quasilinear equations with several independent variables. Math. USSR-Sb. 10, 217–243 (1970) · Zbl 0215.16203
[86] Miyakawa T.: Construction of solutions of a semilinear paraboric equation with the aid of the linear Boltzmann equation. Hiroshima Math. J. 14, 299–310 (1984) · Zbl 0562.35047
[87] Moll J.S.: The anisotropic total variation flow. Math. Ann. 332, 177–218 (2005) · Zbl 1109.35061
[88] Morgan F.: Planar Wulff shape is unique equilibrium. Proc. Am. Math. Soc. 133, 809–813 (2005) · Zbl 1071.49025
[89] Mucha P.B., Rybka P.: A new look at equilibria in Stefan-type problems in the plane. SIAM J. Math. Anal. 39, 1120–1134 (2007) · Zbl 1145.53033
[90] Mullins W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)
[91] Odisharia, I.V.: Simulation and analysis of the relaxation of a crystalline surface. PhD thesis, New York University (2006)
[92] Osher S., Solé A., Vese L.: Image decomposition and restoration using total variation minimization and the H norm. Multiscale Model. Simul. 1, 349–370 (2003) · Zbl 1051.49026
[93] Rudin L., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992) · Zbl 0780.49028
[94] Roosen, A.R.: Crystalline curvature and flat flow in a diffusion field. Unpublished note (1994)
[95] Shirakawa, K.: Stability for steady-state solutions of a nonisothermal Allen-Cahn equation generated by a total variation energy. In: Nonlinear Partial Differential Equations and Their Applications. GAKUTO Internet. Ser. Math. Sci. Appl., vol. 20, pp. 289–304. Gakkotosho, Tokyo (2004) · Zbl 1076.35017
[96] Shirakawa K., Kimura M.: Stability analysis for Allen-Cahn type equation associated with the total variation energy. Nonlinear Anal. 60, 257–282 (2005) · Zbl 1274.35083
[97] Spohn H.: Surface dynamics below the roughening temperature. J. Phys. I. France 3, 69–81 (1993)
[98] Tang B., Sapiro G., Caselles V.: Diffusion of general data on non-flat manifold via harmonic map theory; the direction diffusion case. Int. J. Comput. Vis. 36, 149–161 (2000) · Zbl 02180371
[99] Taylor, J.: Constructions and conjectures in crystalline nondifferential geometry. In: Lawson, B., Tanenblat, K. (eds.) Differential Geometry. Proceedings of the Conference on Differential Geometry, Rio de Janeiro. Pitman Monographs in Pure and Applied Math., vol. 52, pp. 321–336. Pitman, London (1991) · Zbl 0725.53011
[100] Tsai Y.-H.R., Giga Y., Osher S.: A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations. Math. Comput. 72, 159–181 (2003) · Zbl 1013.65088
[101] Vese L., Osher S.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40, 2085–2104 (2002) · Zbl 1035.65065
[102] Watanabe H., Oharu S.: BV-entropy solutions to nonlinear strongly degenerate parabolic equations. Adv. Differ. Equ. 15, 757–800 (2010) · Zbl 1215.35094
[103] Zhai, J.: On the uniqueness conjecture of Wulff shape. Preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.