×

zbMATH — the first resource for mathematics

Infinite sequence of fixed-point free pseudo-Anosov homeomorphisms. (English) Zbl 1213.37071
An infinite sequence of pseudo-Anosov homeomorphisms without fixed points and leaving invariant a sequence of orientable measured foliations on the same topological surface and the same stratum of the space of Abelian differentials is constructed. The main paper result is the following
Theorem. There exists infinite sequences of pseudo-Anosov homeomorphisms with orientable invariant measured foliations on the same stratum of the space of measured foliations and without fixed points of negative index.
The existence of such a sequence shows that all pseudo-Anosov homeomorphisms fixing orientable measured foliations cannot be obtained by the so-called Rauzy-Veech induction strategy.

MSC:
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Papadopoulos, Pacific J. Math. 130 pp 359– (1987) · Zbl 0602.57019 · doi:10.2140/pjm.1987.130.359
[2] Penner, Ann. of Math. Stud. 125 (1992)
[3] DOI: 10.1007/BF02699534 · Zbl 0902.58028 · doi:10.1007/BF02699534
[4] DOI: 10.1142/S021821650200186X · Zbl 1010.57004 · doi:10.1142/S021821650200186X
[5] Casson, Automorphisms of Surfaces After Nielsen and Thurston (1988) · doi:10.1017/CBO9780511623912
[6] Jiang, Lectures on Nielsen Fixed Point Theory (1983) · Zbl 0512.55003 · doi:10.1090/conm/014
[7] Hamenstädt, Spaces of Kleinian Groups (2005)
[8] DOI: 10.1016/0166-8641(94)00147-2 · Zbl 0810.54031 · doi:10.1016/0166-8641(94)00147-2
[9] DOI: 10.1016/0040-9383(94)E0009-9 · Zbl 0837.57010 · doi:10.1016/0040-9383(94)E0009-9
[10] Fathi, Astérisque 66–67 (1979)
[11] DOI: 10.2307/2154168 · Zbl 0754.57006 · doi:10.2307/2154168
[12] Arnoux, C. R. Math. Acad. Sci. Paris 292 pp 75– (1981)
[13] Arnoux, Bull. Soc. Math. France 116 pp 489– (1988)
[14] Alseda, Combinatorial Dynamics and Entropy in Dimension One (1993) · doi:10.1142/1980
[15] DOI: 10.1016/0040-9383(67)90005-5 · Zbl 0159.53702 · doi:10.1016/0040-9383(67)90005-5
[16] DOI: 10.2307/2007091 · Zbl 0658.32016 · doi:10.2307/2007091
[17] DOI: 10.1090/S0273-0979-1988-15685-6 · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[18] Rauzy, Acta. Arith. 34 pp 315– (1979)
[19] Mosher, Low-dimensional Topology and Kleinian Groups (Coventry/Durham, 1984) pp 13– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.