×

zbMATH — the first resource for mathematics

Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. (English) Zbl 1213.37131
The authors consider a nonlinear multi-agent system composed of \(N\) coupled autonomous agents with second-order dynamics:
\[ \dot x_i(t)=v_i(t), \quad \dot v_i(t)=f(t, x_i(t), v_i(t)), \quad i=1,\dots,N, \tag{1} \] where \(n\)-vectors \(x_i\) and \(v_i\) are the position and velocity states of agent \(i\), \(f\) is a nonlinear vector-valued continuous function, \(u_i\) is the control input for agent \(i\). The virtual leader for multi-agent system (1) is described by
\[ \dot x_r(t)=v_r(t), \quad \dot v_r(t)=f(t, x_r(t), v_r(t)). \tag{2} \]
The multi-agent system (1) is said to achieve second-order leader-following consensus, if its solution satisfies \(\lim_{t\to\infty}\|x_i(t)-x_r(t)\|=0\), \(\lim_{t\to\infty}\|v_i(t)-v_r(t)\|=0\), \(i=1,\dots,n\), for any initial conditions.
With the use of graph theory, matrix theory, and LaSalle’s invariance principle, a consensus algorithm based on pinning control is developed in the paper for second-order multi-agent systems with time-varying and constant reference velocities \(v_r\). A pinned-agent selection scheme is provided to determine what kind of followers and how many followers should be informed by the virtual leader, sufficient conditions are derived to guarantee the global asymptotic stability of the second-order leader-following consensus.
Numerical simulation results are presented for systems with 10 and 100 agents.

MSC:
37N35 Dynamical systems in control
93C15 Control/observation systems governed by ordinary differential equations
34H05 Control problems involving ordinary differential equations
Software:
Boids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reynolds, C.W., Flocks, herds, and schools: a distributed behavioral model, Comput. graph., 21, 4, 25-34, (1987)
[2] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Novel type of phase transition in a system of self-driven particles, Phys. rev. lett., 75, 6, 1226-1229, (1995)
[3] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE trans. automat. control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[4] Ren, W.; Beard, R.W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE trans. automat. control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[5] Sun, Y.; Wang, L.; Xie, G., Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays, Systems control lett., 57, 175-183, (2008) · Zbl 1133.68412
[6] Lu, J.; Ho, D.W.C.; Kurths, J., Consensus over directed static networks with arbitrary finite communication delays, Phys. rev. E, 80, 066121, (2009)
[7] Ren, W.; Atkins, E., Distributed multi-vehicle coordinated control via local information exchange, Int. J. robust nonlinear control, 17, 1002-1033, (2007) · Zbl 1266.93010
[8] Xie, G.; Wang, L., Consensus control for a class of networks of dynamic agents, Int. J. robust nonlinear control, 17, 941-959, (2007) · Zbl 1266.93013
[9] Hong, Y.; Chen, G.; Bushnell, L., Distributed observers design for leader-following control of multi-agent networks, Automatica, 44, 846-850, (2008) · Zbl 1283.93019
[10] Ren, W., On consensus algorithms for double-integrator dynamics, IEEE trans. automat. control, 53, 6, 1503-1509, (2008) · Zbl 1367.93567
[11] Sun, Y.; Wang, L., Consensus problems in networks of agents with double-integrator dynamics and time-varying delays, Int. J. control, 82, 10, 1937-1945, (2009) · Zbl 1178.93013
[12] Tian, Y.; Liu, C., Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations, Automatica, 45, 1347-1353, (2009) · Zbl 1162.93027
[13] Lin, P.; Jia, Y., Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies, Automatica, 45, 2154-2158, (2009) · Zbl 1175.93078
[14] Wu, C.W.; Chua, L.O., Synchronization in an array of linearly coupled dynamical systems, IEEE trans. circuits syst. I, 42, 8, 430-447, (1995) · Zbl 0867.93042
[15] Pecora, L.M.; Carroll, T.L., Master stability functions for synchronized coupled systems, Phys. rev. lett., 80, 10, 2109-2112, (1998)
[16] Lu, W.; Chen, T., New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 214-230, (2006) · Zbl 1105.34031
[17] Ren, W., Synchronization of coupled harmonic oscillators with local interaction, Automatica, 44, 3195-3200, (2008) · Zbl 1153.93421
[18] Su, H.; Wang, X.F.; Lin, Z., Synchronization of coupled harmonic oscillators in a dynamic proximity network, Automatica, 45, 2286-2291, (2009) · Zbl 1179.93102
[19] D’Humieres, D.; Beasley, M.R.; Huberman, B.A.; Libchaber, A., Chaotic states and routes to chaos in the forced pendulum, Phys. rev. A, 26, 6, 3483-3496, (1982)
[20] Amster, P.; Mariani, M.C., Some results on the forced pendulum equation, Nonlinear anal., 68, 1874-1880, (2008) · Zbl 1148.34313
[21] Khalil, H.K., Nonlinear systems, (2002), Prentice Hall · Zbl 0626.34052
[22] Yu, W.; Chen, G.; Cao, M.; Kurths, J., Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics, IEEE trans. syst. man cybern. part B, 40, 3, 881-891, (2010)
[23] Chen, F.; Chen, Z.; Xiang, L.; Liu, Z.; Yuan, Z., Reaching a consensus via pinning control, Automatica, 45, 1215-1220, (2009) · Zbl 1162.93305
[24] Liu, X.; Chen, T.; Lu, W., Consensus problem in directed networks of multi-agents via nonlinear protocols, Phys. lett. A, 373, 3122-3127, (2009) · Zbl 1233.34012
[25] Ren, W., Multi-vehicle consensus with a time-varying reference state, Systems control lett., 56, 474-483, (2007) · Zbl 1157.90459
[26] Wang, X.F.; Chen, G., Pinning control of scale-free dynamical networks, Physica A, 310, 521-531, (2002) · Zbl 0995.90008
[27] Li, X.; Wang, X.F.; Chen, G., Pinning a complex dynamical network to its equilibrium, IEEE trans. circuits syst. I, 51, 10, 2074-2087, (2004) · Zbl 1374.94915
[28] Yu, W.; Chen, G.; Lü, J., On pinning synchronization of complex dynamical networks, Automatica, 45, 429-435, (2009) · Zbl 1158.93308
[29] Xiang, J.; Chen, G., On the V-stability of complex dynamical networks, Auomatica, 43, 1049-1057, (2007) · Zbl 1330.93180
[30] Xiang, J.; Chen, G., Analysis of pinning-controlled networks: a renormalization approach, IEEE trans. automat. control, 54, 8, 1869-1875, (2009) · Zbl 1367.93449
[31] Chen, T.; Liu, X.; Lu, W., Pinning complex networks by a single controller, IEEE trans. circuits syst. I, 54, 6, 1317-1326, (2007) · Zbl 1374.93297
[32] Lu, J.; Ho, D.W.C.; Wang, Z., Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers, IEEE trans. neural netw., 20, 10, 1617-1629, (2009)
[33] Xiong, W.; Ho, D.W.C.; Huang, C., Pinning synchronization of time-varying polytopic directed stochastic networks, Phys. lett. A, 374, 439-447, (2010) · Zbl 1235.34160
[34] Lu, W.; Li, X.; Rong, Z., Global stabilization of complex networks with diagraph topologies via a local pinning algorithm, Automatica, 46, 116-121, (2010) · Zbl 1214.93090
[35] Song, Q.; Cao, J., On pinning synchronization of directed and undirected complex dynamical networks, IEEE trans. circuits syst. I, 57, 3, 672-680, (2010)
[36] Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004
[37] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Oxford University Press London · Zbl 0258.65037
[38] Langville, A.N.; Stewart, W.J., The Kronecker product and stochastic automata networks, J. comput. appl. math., 167, 429-447, (2004) · Zbl 1104.68062
[39] Huijberts, H.; Nijmeijer, H.; Oguchi, T., Anticipating synchronization of chaotic lur’e systems, Chaos, 17, 013117, (2007) · Zbl 1159.37356
[40] Park, S.M.; Kim, B.J., Dynamic behaviors in directed networks, Phys. rev. E, 74, 026114, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.