# zbMATH — the first resource for mathematics

A general iterative scheme for $$k$$-strictly pseudo-contractive mappings and optimization problems. (English) Zbl 1213.65080
The article deals with fixed points of $$k$$-strictly pseudo-contractive mappings $$T:\;C (\subset H) \to H$$ in a real Hilbert space $$H$$, and where $$C$$ is a nonempty closed convex subset of $$H$$ with the following properties $$C \pm C \subset C$$. (A mapping $$T$$ is said to be $$k$$-strictly pseudocontractive ($$0 \leq k < 1$$) if $\|Tx - Ty\|^2 \leq \|x - y\|^2 + k\|(I - T)x - (I - T)y\|^2 \quad (x, y \in C).)$
It is assumed that $$F(T) \neq \emptyset$$ and considered the iteration scheme
$x_{n+1} = \alpha_n(u + \gamma f(x_n)) + \beta_nx_n + (1 - \beta_n)I - \alpha_n(I + \mu A))P_CSx_n, \quad n = 0,1,2,\dots,$
where $$S:\;C \to H$$ is a mapping defined by $$Sx = kx + (1 - k)Tx$$, $$P_C$$ is the metric projection of $$H$$ onto $$C$$, $$A$$ is a strongly positive bounded linear operator on $$C$$ satisfying the inequality $$(Ax,x) \geq \overline{\gamma}\|x\|^2$$ with some $$\overline{\gamma} \in (0,1)$$, $$f:\;C \to C$$ is a contraction with constant $$\alpha \in (0,1)$$ and such that $$0 < \gamma < \frac{(1 + \mu)\overline{\gamma}}{\alpha}$$ ($$\mu > 0$$), and, at last, the sequences $$\{\alpha_n\}$$ and $$\{\beta_n\}$$ satisfying the conditions $$\lim\limits_{n \to\infty} \alpha_n = 0$$, $$\sum\limits_{n=0}^\infty \alpha_n = \infty$$, $$0 < \liminf\limits_{n \to \infty} \beta_n \leq \limsup\limits_{n \to \infty} \beta_n < 1$$. Under these assumptions it is stated that $$\{x_n\}$$ converges strongly to a fixed point of $$T$$, which is a solution of the optimization problem
$\min_{x \in F(T)} \;\frac\mu2 (Ax,x) + \frac12 \|x - u\|^2 - h(x),$
where $$h$$ is a potential function for $$\gamma f$$. The analogous statement is proved for a family $$T_i:\;C \to H$$, $$i = 1,\dots,N$$, of $$k_i$$-strictly pseudo-contractive mappings; in this case $$S$$ is defined with the equation $$Sx = kx + (1 - k)\sum\limits_{i=1}^N \eta_iT_ix$$.
Reviewer’s remark: It should be mentioned that in the article there are several places and misprints; in particular, $$C$$ is a closed convex subset of $$H$$ satisfying the property $$C \pm C \subset C$$; such subsets are simply (closed) subspaces in $$H$$ with corresponding consequences.

##### MSC:
 65J15 Numerical solutions to equations with nonlinear operators (do not use 65Hxx) 47H09 Contraction-type mappings, nonexpansive mappings, $$A$$-proper mappings, etc. 47H10 Fixed-point theorems 47J25 Iterative procedures involving nonlinear operators
Full Text:
##### References:
 [1] Browder, F.E., Fixed point theorems for noncompact mappings, Proc. natl. acad. sci. USA., 53, 1272-1276, (1965) · Zbl 0125.35801 [2] Browder, F.E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. ration. mech. anal., 24, 82-90, (1967) · Zbl 0148.13601 [3] Browder, F.E.; Petryshn, W.V., Construction of fixed points of nonlinear mappings Hilbert space, J. math. anal. appl., 20, 197-228, (1967) · Zbl 0153.45701 [4] Acedo, G.L.; Xu, H.K., Iterative methods for strictly pseudo-contractions in Hilbert space, Nonlinear anal., 67, 2258-2271, (2007) · Zbl 1133.47050 [5] Cho, Y.J.; Kang, S.M.; Qin, X., Some results on k-strictly pseudo-contractive mappings in Hilbert spaces, Nonlinear anal., 70, 1956-1964, (2009) · Zbl 1189.47064 [6] Jung, J.S., Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in Hilbert spaces, Appl. math. comput., 215, 3746-3753, (2010) · Zbl 1236.47071 [7] Morales, C.H.; Jung, J.S., Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. amer. math. soc., 128, 3411-3419, (2000) · Zbl 0970.47039 [8] Moudafi, A., Viscosity approximation methods for fixed-points problems, J. math. anal. appl., 241, 46-55, (2000) · Zbl 0957.47039 [9] Xu, H.K., Viscosity approximation methods for nonexpansive mappings, J. math. anal. appl., 298, 279-291, (2004) · Zbl 1061.47060 [10] Bauschke, H.H.; Borwein, J.M., On projection algorithms for solving convex feasibility problems, SIAM rev., 38, 367-426, (1997) · Zbl 0865.47039 [11] Combettes, P.L., Hilbertian convex feasibility problem: convergence of projection methods, Appl. math. optim., 35, 311-330, (1997) · Zbl 0872.90069 [12] Deutsch, F.; Yamada, I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. funct. anal. optim., 19, 33-56, (1998) · Zbl 0913.47048 [13] Jung, J.S., Iterative algorithms with some control conditions for quadratic optimizations, Panamer. math. J., 16, 4, 13-25, (2006) · Zbl 1165.47058 [14] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 240-256, (2002) · Zbl 1013.47032 [15] Marino, G.; Xu, H.X., A general iterative method for nonexpansive mappings in Hilbert spaces, J. math. anal. appl., 318, 43-52, (2006) · Zbl 1095.47038 [16] Halpern, B., Fixed points of nonexpansive maps, Bull. amer. math. soc., 73, 957-961, (1967) · Zbl 0177.19101 [17] Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. math., 58, 486-491, (1992) · Zbl 0797.47036 [18] Goebel, K.; Kirk, W.A., Topics in metric fixed point theory, Cambridge studies in advanced mathematics, Vol. 28, (1990), Cambridge Univ. Press Cambridge, UK · Zbl 0708.47031 [19] Zhou, H., Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear anal., 69, 456-462, (2008) · Zbl 1220.47139 [20] Liu, L.S., Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. math. anal. appl., 194, 114-125, (1995) · Zbl 0872.47031 [21] Suzuki, T., Strong convergence of Krasnoselskii and mannâ€™s type sequences for one parameter nonexpansive semigroups without Bochner integral, J. math. anal. appl., 305, 227-239, (2005) · Zbl 1068.47085 [22] Yao, Y.H.; Aslam Noor, M.; Zainab, S.; Liou, Y.-C., Mixed equilibrium problems and optimization problems, J. math. anal. appl., 354, 319-329, (2009) · Zbl 1160.49013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.