×

zbMATH — the first resource for mathematics

Similarity solutions of a MHD boundary-layer flow past a continuous moving surface. (English) Zbl 1213.76234
Summary: This note deals with a theoretical and numerical analysis of multiple similarity solutions of the two-dimensional MHD boundary-layer flow over a permeable surface, with a power law stretching velocity, in the presence of a magnetic field \(B\) applied normally to the surface. We have taken the free stream velocity to vary as \(x^m\), where \(x\) is the coordinate along the plate measured from the leading edge and \(m\) is a constant. The magnetic field \(B\) is assumed to be proportional to \(x^{\frac{m-1}{2}}\). The problem depends on the power law exponent and the magnetic parameter \(M\) or the Stewart number. It is shown, under certain circumstance, that the problem has an infinite number of solutions.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, National bureau of standards, (1964) · Zbl 0515.33001
[2] Aly, E.H.; Elliott, L.; Ingham, D.B., Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium, Eur. J. mech. B fluids, 22, 529-543, (2003) · Zbl 1033.76055
[3] Anjali Devi, S.P.; Kandasamy, R., Thermal stratification effects on non linear MHD laminar boundary-layer flow over a wedge with suction or injection, Int. commun. heat mass transfer, 30, 717-725, (2003)
[4] Anjali Devi, S.P.; Thiyagarajan, M., Steady nonlinear hydromagnetic flow and heat transfer over a stretching surface of variable temperature, Heat mass transfer, 42, 671-677, (2006)
[5] Banks, W.H.H., Similarity solutions of the boundary layer equations for a stretching wall, J. Mécan. théo. appl., 2, 375-392, (1983) · Zbl 0538.76039
[6] Banks, W.H.H.; Zaturska, M.B., Eigensolutions in boundary-layer flow adjacent to a stretching wall, IMA J. appl. math., 36, 375-392, (1986) · Zbl 0619.76011
[7] Belhachmi, Z.; Brighi, B.; Taous, K., On a family of differential equation for boundary layer approximations in porous media, Eur. J. appl. math., 12, 513-528, (2001) · Zbl 0991.76084
[8] Boyd, J.P., Chebyshev and Fourier spectral methods, (2000), Dover New York
[9] Brezis, H.; Peletier, L.A.; Terman, D., A very singular solution of the heat equation with absorption, Arch. ration. mech. anal., 95, 185-209, (1986) · Zbl 0627.35046
[10] B. Brighi, M. Benlahsen, M. Guedda, S. Peponas, Mixed convection on a wedge embedded in a porous medium, in preparation.
[11] Brighi, B.; Hoernel, J-D., On the concave and convex solutions of mixed convection boundary layer approximation in a porous medium, Appl. math. lett., 19, 69-74, (2006) · Zbl 1125.34005
[12] Canuto, C.; Hussaini, M.Y.; Quarterini, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer-Verlag Berlin
[13] Chakrabarti, A.; Gupta, A.S., Hydromagnetic flow and heat transfer over a stretching sheet, Quart. appl. math., 37, 73-78, (1979) · Zbl 0402.76012
[14] Chaturvedi, N., On MHD flow past an infinite porous plate with variable suction, Energ. convers. manage., 37, 623-627, (1996)
[15] Chaudhary, M.A.; Merkin, J.H.; Pop, I., Similarity solutions in free-convection boundary layer flows adjacent to vertical permeable surfaces in porous media. I. prescribed surface temperature, Eur. J. mech. B fluids, 14, 217-237, (1995) · Zbl 0835.76100
[16] Cheng, P.; Minkowycz, W.J., Free-convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. geophys. res., 82, 2040-2044, (1977)
[17] Chiam, T.C., Hydromagnetic flow over a surface stretching with a power-law velocity, Int. J. eng. sci., 33, 429-435, (1995) · Zbl 0899.76375
[18] Coppel, W.A., On a differential equation of boundary layer theory, Philos. trans. royal soc. London ser. A, 253, 101-136, (1960) · Zbl 0093.19105
[19] Cortel, R., Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field, Int. J. heat mass transfer, 49, 1851-1856, (2006) · Zbl 1189.76778
[20] Elbarbary, E.M.E., Chebyshev finite difference method for the solution of boundary-layer equations, Appl. math. comput., 160, 487-498, (2005) · Zbl 1059.76043
[21] Elbarbary, E.M.E.; El-Kady, M., Chebyshev finite difference approximation for the boundary value problems, Appl. math. comput., 139, 513-523, (2003) · Zbl 1027.65098
[22] Elbarbary, E.M.E.; El-Sayed, S.M., Higher order pseudospectral differentiation matrices, Appl. numer. math., 55, 425-438, (2005) · Zbl 1086.65016
[23] Fox, L.; Parker, I.B., Chebyshev polynomials in numerical analysis, (1968), Oxford University Press London · Zbl 0153.17502
[24] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, CBMS-NSF regional conference series, Applied mathematics, vol. 26, (1977), SIAM Philadelphia, PA
[25] Greengard, L., Spectral integration and two-point boundary value problems, SIAM J. numer. anal., 28, 1071-1080, (1991) · Zbl 0731.65064
[26] Guedda, M., Similarity solutions of differential equations for boundary layer approximations in porous media, ZAMP, J. appl. math. phys., 56, 749-762, (2005) · Zbl 1084.34034
[27] Guedda, M., Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. math. lett., 19, 63-68, (2006) · Zbl 1125.34006
[28] Ingham, D.B.; Brown, S.N., Flow past a suddenly heated vertical plate in a porous medium, J. proc. R. soc. London A, 403, 51-80, (1986) · Zbl 0586.76151
[29] Kidder, L.E.; Scheel, M.A.; Teukolsky, S.A.; Carlson, E.D.; Cook, G.B., Black hole evolution by spectral methods, Phys. rev. D, 62, 1-20, (2000)
[30] Magyari, E.; Aly, E.H., Exact analytical solution for a thermal boundary layer in a saturated porous medium, Appl. math. lett., 19, 1351-1355, (2006) · Zbl 1154.76049
[31] Magyari, E.; Aly, E.H., Mechanical and thermal characteristics of a mixed convection boundary-layer flow in a saturated porous medium, Int. J. heat mass transfer, 49, 3855-3865, (2006) · Zbl 1099.76059
[32] Magyari, E.; Keller, B., Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. mech. B fluids, 19, 109-122, (2000) · Zbl 0976.76021
[33] Nazar, R.; Amin, N.; Pop, I., Unsteady mixed convection boundary-layer flow near the stagnation point over a vertical surface in a porous medium, Int. J. heat mass transfer, 47, 2681-2688, (2004) · Zbl 1079.76637
[34] Peyret, R., Spectral methods for incompressible viscous flow, (2002), Springer-Verlag New York · Zbl 1005.76001
[35] Pop, I.; Na, T.Y., A note on MHD flow over a stretching permeable surface, Mech. res. commun., 25, 263-269, (1998) · Zbl 0979.76097
[36] Raptis, A.; Perdikis, C.; Takhar, H.S., Effect of thermal radiation on MHD flow, Appl. math. comput., 153, 645-649, (2004) · Zbl 1050.76061
[37] Snyder, M.A., Chebyshev methods in numerical approximation, (1966), Prentice-Hall USA · Zbl 0173.44102
[38] Takhar, H.S., Hydromagnetic free convection from a flat plate, Indian J. phys., 45, 289-311, (1971)
[39] Takhar, H.S.; Chamkha, A.J.; Nath, G., Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Int. J. eng. sci., 38, 1303-1314, (2000) · Zbl 1210.76205
[40] Takhar, H.S.; Nath, G., Similarity solutions of unsteady boundary layer equations with a magnetic field, Mecanica, 32, 157-163, (1997) · Zbl 0877.76083
[41] Voigt, R.G.; Gottlieb, D.; Hussaini, M.Y., Spectral methods for partial differential equations, (1984), SIAM Philadelphia, PA
[42] Yang, H.H.; Seymour, B.R.; Shizgal, B.D., A Chebyshev pseudospectral multi-domain method for steady flow past a cylinder, up to re=150, Comput. fluids, 23, 829-851, (1994) · Zbl 0817.76064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.