zbMATH — the first resource for mathematics

An iterative method for pricing American options under jump-diffusion models. (English) Zbl 1213.91164
Summary: We propose an iterative method for pricing American options under jump-diffusion models. A finite difference discretization is performed on the partial integro-differential equation, and the American option pricing problem is formulated as a linear complementarity problem (LCP). Jump-diffusion models include an integral term, which causes the resulting system to be dense. We propose an iteration to solve the LCPs efficiently and prove its convergence. Numerical examples with Kou’s and Merton’s jump-diffusion models show that the resulting iteration converges rapidly.

91G60 Numerical methods (including Monte Carlo methods)
65N06 Finite difference methods for boundary value problems involving PDEs
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI Link
[1] Achdou, Y.; Pironneau, O., Computational methods for option pricing, Frontiers in applied mathematics, vol. 30, (2005), SIAM Philadelphia, PA · Zbl 1078.91008
[2] Almendral, A.; Oosterlee, C.W., Numerical valuation of options with jumps in the underlying, Appl. numer. math., 53, 1-18, (2005) · Zbl 1117.91028
[3] Andersen, L.; Andreasen, J., Jump-diffusion processes: volatility smile Fitting and numerical methods for option pricing, Rev. derivatives res., 4, 231-262, (2000) · Zbl 1274.91398
[4] Bates, D.S., Jumps and stochastic volatility: exchange rate processes implicit deutsche mark options, Rev. finan. stud., 9, 69-107, (1996)
[5] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. polit. economy, 81, 637-654, (1973) · Zbl 1092.91524
[6] Brennan, M.J.; Schwartz, E.S., The valuation of American put options, J. finance, 32, 449-462, (1977)
[7] Carr, P.; Geman, H.; Madan, D.B.; Yor, M., The fine structure of asset returns: an empirical investigation, J. business, 75, 305-332, (2002)
[8] dʼHalluin, Y.; Forsyth, P.A.; Labahn, G., A penalty method for American options with jump diffusion processes, Numer. math., 97, 321-352, (2004) · Zbl 1126.91036
[9] dʼHalluin, Y.; Forsyth, P.A.; Vetzal, K.R., Robust numerical methods for contingent claims under jump diffusion processes, IMA J. numer. anal., 25, 87-112, (2005) · Zbl 1134.91405
[10] Eraker, B.; Johannes, M.; Polson, N., The impact of jumps in volatility and returns, J. finance, 58, 1269-1300, (2003)
[11] Fang, F.; Oosterlee, C.W., Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions, Numer. math., 114, 27-62, (2009) · Zbl 1185.91176
[12] Giles, M.B.; Carter, R., Convergence analysis of Crank-Nicolson and rannacher time-marching, J. comput. finance, 9, 89-112, (2006)
[13] Huang, J.; Pang, J.S., Option pricing and linear complementarity, J. comput. finance, 2, 31-60, (1998)
[14] Ikonen, S.; Toivanen, J., Operator splitting methods for American option pricing, Appl. math. lett., 17, 809-814, (2004) · Zbl 1063.65081
[15] Ikonen, S.; Toivanen, J., Pricing American options using LU decomposition, Appl. math. sci., 1, 2529-2551, (2007) · Zbl 1140.91046
[16] Ikonen, S.; Toivanen, J., Operator splitting methods for pricing American options under stochastic volatility, Numer. math., 113, 299-324, (2009) · Zbl 1204.91126
[17] Kou, S.G., A jump-diffusion model for option pricing, Manage. sci., 48, 1086-1101, (2002) · Zbl 1216.91039
[18] Lord, R.; Fang, F.; Bervoets, F.; Oosterlee, C.W., A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes, SIAM J. sci. comput., 30, 1678-1705, (2008) · Zbl 1170.91389
[19] Merton, R.C., Theory of rational option pricing, Bell J. econom. manage. sci., 4, 141-183, (1973) · Zbl 1257.91043
[20] Merton, R.C., Option pricing when underlying stock returns are discontinuous, J. finan. econ., 3, 125-144, (1976) · Zbl 1131.91344
[21] Rannacher, R., Finite element solution of diffusion problems with irregular data, Numer. math., 43, 309-327, (1984) · Zbl 0512.65082
[22] Sachs, E.W.; Strauss, A.K., Efficient solution of a partial integro-differential equation in finance, Appl. numer. math., 58, 1687-1703, (2008) · Zbl 1155.65109
[23] Tavella, D.; Randall, C., Pricing financial instruments: the finite difference method, (2000), John Wiley & Sons Chichester
[24] Toivanen, J., Numerical valuation of European and American options under kouʼs jump-diffusion model, SIAM J. sci. comput., 30, 1949-1970, (2008) · Zbl 1178.35225
[25] Toivanen, J., A high-order front-tracking finite difference method for pricing American options under jump-diffusion models, J. comput. finance, 13, 61-79, (2010) · Zbl 1284.91575
[26] Wilmott, P., Derivatives, (1998), John Wiley & Sons Ltd. Chichester
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.