×

Iterative algorithms for a new class of extended general nonconvex set-valued variational inequalities. (English) Zbl 1214.47065

Summary: Some new classes of extended general nonconvex set-valued variational inequalities and the extended general Wiener-Hopf inclusions are introduced. By the projection technique, the equivalence between the extended general nonconvex set-valued variational inequalities and fixed point problems as well as extended general nonconvex Wiener-Hopf inclusions is proved. Then, by using this equivalent formulation, we discuss the existence of solutions of the extended general nonconvex set-valued variational inequalities and construct some new perturbed finite step projection iterative algorithms with mixed errors for approximating the solutions of extended general nonconvex set-valued variational inequalities. We also verify that the approximate solutions obtained by our algorithms converge to the solutions of extended general nonconvex set-valued variational inequalities. The results presented in this paper extend and improve some known results from the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
49J40 Variational inequalities
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47J22 Variational and other types of inclusions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Stampacchia, G., Formes bilineaires coercitives sur LES ensembles convexes, C. R. acad. sci. Paris, 258, 4413-4416, (1964) · Zbl 0124.06401
[2] Lions, J.L.; Stampacchia, G., Variational inequalities, Comm. pure appl. math., 20, 493-512, (1967) · Zbl 0152.34601
[3] Shi, P., Equivalence of variational inequalities with wiener – hopf equations, Proc. amer. math. soc., 111, 339-346, (1991) · Zbl 0881.35049
[4] Shi, P., An iterative method for obstacles problems via green’s functions, Nonlinear anal., 15, 339-344, (1990) · Zbl 0725.65068
[5] Robinson, S.M., Normal maps induced by linear transformations, Math. oper. res., 17, 691-714, (1992) · Zbl 0777.90063
[6] Robinson, S.M., Sensitivity analysis of variational inequalities by normal-map techniques, (), 257-276 · Zbl 0861.49009
[7] Sellami, H.; Robinson, S.M., Implementation of a continuation method for normal maps, Math. program., 76, 563-578, (1997) · Zbl 0873.90093
[8] Bounkhel, M.; Tadji, L.; Hamdi, A., Iterative schemes to solve nonconvex variational problems, J. inequal. pure appl. math., 4, 1-14, (2003) · Zbl 1045.58014
[9] Clarke, F.H.; Ledyaev, Yu.S.; Stern, R.J.; Wolenski, P.R., Nonsmooth analysis and control theory, (1998), Springer-Verlag New York · Zbl 0951.49003
[10] Clarke, F.H.; Stern, R.J.; Wolenski, P.R., Proximal smoothness and the lower \(C^2\) property, J. convex anal., 2, 1/2, 117-144, (1995) · Zbl 0881.49008
[11] Poliquin, R.A.; Rockafellar, R.T.; Thibault, L., Local differentiability of distance functions, Trans. amer. math. soc., 352, 5231-5249, (2000) · Zbl 0960.49018
[12] Noor, M.A., Iterative schemes for nonconvex variational inequalities, J. optim. theory appl., 121, 385-395, (2004) · Zbl 1062.49009
[13] M.A. Noor, Variational inequalities and applications, Lecture Notes, Mathematics Department, COMSATS Institute of information Technology, Islamabad, Pakistan, 2007-2009.
[14] Pang, L.P.; Shen, J.; Song, H.S., A modified predictor – corrector algorithm for solving nonconvex generalized variational inequalities, Comput. math. appl., 54, 319-325, (2007) · Zbl 1131.49010
[15] M.A. Noor, Projection methods for nonconvex variational inequalities, Optim. Lett. doi:10.1007/s11590-009-0121-1. · Zbl 1171.58307
[16] Noor, M.A., Iterative methods for general nonconvex variational inequalities, Albanian J. math., 3, 1, 117-127, (2009) · Zbl 1213.49017
[17] Clarke, F.H., Optimization and nonsmooth analysis, (1983), Wiley-Interscience New York · Zbl 0727.90045
[18] Bounkhel, M., Existence results of nonconvex differential inclusions, Port. math. (N.S.), 59, 3, 283-309, (2002) · Zbl 1022.34007
[19] Bounkhel, M., General existence results for second order nonconvex sweeping process with unbounded perturbations, Port. math. (N.S.), 60, 3, 269-304, (2003) · Zbl 1055.34116
[20] Bounkhel, M.; Azzam, L., Existence results on the second order nonconvex sweeping processes with perturbations, Set-valued anal., 12, 3, 291-318, (2004) · Zbl 1048.49002
[21] M. Bounkhel, L. Thibault, Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process, Centro de Modelamiento Matematico, CMM, Universidad de Chile, 2000, Preprint.
[22] Canino, A., On \(p\)-convex sets and geodesics, J. differential equations, 75, 118-157, (1988) · Zbl 0661.34042
[23] Nadler, S.B., Multi-valued contraction mappings, Pacific J. math., 30, 2, 475-488, (1996) · Zbl 0187.45002
[24] Noor, M.A., Sensitivity analysis of extended general variational inequalities, Appl. math. E-notes, 9, 17-26, (2009) · Zbl 1158.49028
[25] Noor, M.A., Quasi variational inequalities, Appl. math. lett., 1, 367-370, (1988) · Zbl 0708.49015
[26] Liu, L.S., Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. math. anal. appl., 194, 114-125, (1995) · Zbl 0872.47031
[27] Noor, M.A., Some developments in general variational inequalities, Appl. math. comput., 152, 199-277, (2004) · Zbl 1134.49304
[28] Lions, P.L.; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM, J. numer. anal., 16, 964-979, (1979) · Zbl 0426.65050
[29] Bnouhachem, A.; Noor, M.A., Numerical methods for general mixed variational inequalities, Appl. math. comput., 204, 27-36, (2008) · Zbl 1157.65037
[30] Brezis, H., Operateurs maximaux monotone, ()
[31] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (2000), SIAM Philadelphia · Zbl 0988.49003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.