×

Mark-recapture techniques in statistical tests for imprecise data. (English) Zbl 1214.62007

Summary: We aim to construct suitable tests when we have imprecise information about a sample. More specifically, we assume that we get a collection of \(n\) sets of values, each one characterizing an imprecise measurement. Each set specifies where the true sample value is (and where it is not) with full confidence, but it does not provide any additional information. Our main objectives are twofold: first we will review different kinds of tests in the literature about inferential statistics with random sets and discuss the approach that best suits our definition of imprecise data. Secondly, we will show that we can take advantage from mark and recapture techniques to improve the accuracy of our decisions. These techniques will be specially important when the population is small enough (with respect to the sample size) that recaptures are common. They also seem to be useful when resampling techniques are involved in the decision process.

MSC:

62C99 Statistical decision theory
60C99 Combinatorial probability
62A99 Foundational topics in statistics
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Andrews, D.W.K.; Soares, G., Inference for parameters defined by moment inequalities using generalized moment selection, Econometrica, 78, 119-157, (2010) · Zbl 1185.62040
[2] Aumann, J., Integral of set valued functions, Journal of mathematical analysis and applications, 12, 1-12, (1965) · Zbl 0163.06301
[3] Baudrit, C.; Couso, I.; Dubois, D., Joint propagation of probability and possibility in risk analysis: towards a formal framework, International journal of approximate reasoning, 45, 82-105, (2007) · Zbl 1123.68123
[4] Beresteanu, A.; Molinari, F., Asymptotic properties for a class of partially identified models, Econometrica, 76, 763-814, (2007) · Zbl 1274.62136
[5] L. Billard, E. Diday, Symbolic Data Analysis: Definitions and Examples. <http://www.stat.uga.edu/faculty/LYNNE/tr_symbolic.pdf>. · Zbl 1117.62002
[6] A. Blanco, N. Corral, G. González-Rodríguez, M.A. Lubiano, Some properties of the dk-variance for interval-valued randoms sets, in: Fourth International Workshop on Soft Methods in Probability and Statistics (SMPS 2008), Toulouse, France, 2008.
[7] Castaldo, A.; Maccheroni, F.; Marinacci, M., Random correspondences as bundles of random variables, Sankhya, 66, 409-427, (2004) · Zbl 1192.28006
[8] Chernohouz, V.; Hong, H.; Tamer, E., Estimation and confidence regions for parameter sets in econometric models, Econometrica, 75, 1243-1284, (2007) · Zbl 1133.91032
[9] I. Couso, Independence concepts in evidence theory, in: Fifth International Symposium on Imprecise Probabilities: Theory and Applications (ISIPTA 2007), Prague, Czech Republic, 2007.
[10] Couso, I.; Dubois, D., On the variability of the concept of variance for fuzzy random variables, IEEE transactions on fuzzy systems, 17, 1070-1080, (2009)
[11] I. Couso, D. Dubois, S. Montes, L. Sánchez, On various definitions of the variance of a fuzzy random variable, in: Fifth International Symposium on Imprecise Probabilities: Theory and Applications (ISIPTA 2007), Prague, Czech Republic, 2007, pp. 135-144.
[12] Couso, I.; Miranda, E.; de Cooman, G., A possibilistic interpretation of the expectation of a fuzzy random variable, (), 133-140 · Zbl 1061.60003
[13] Couso, I.; Montes, S.; Gil, P., The necessity of the strong alpha-cuts of a fuzzy set, International journal of uncertainty fuzziness and knowledge-based systems, 9, 249-262, (2001) · Zbl 1113.03336
[14] Couso, I.; Montes, S.; Gil, P., Second order possibility measure induced by a fuzzy random variable, (), 127-144
[15] Couso, I.; Moral, S., Independence concepts in evidence theory, International journal of approximate reasoning, 51, 748-758, (2010) · Zbl 1205.68421
[16] Couso, I.; Moral, S.; Walley, P., A survey of concepts of independence for imprecise probabilities, Risk, decision and policy, 5, 165-181, (2000)
[17] Couso, I.; Sánchez, L., Higher order models for fuzzy random variables, Fuzzy sets and systems, 159, 237-258, (2008) · Zbl 1178.60004
[18] I. Couso, L. Sánchez, Inner and outer fuzzy approximations of confidence intervals, Fuzzy Sets and Systems, submitted for publication. · Zbl 1239.62022
[19] Couso, I.; Sánchez, L.; Gil, P., Imprecise distribution function associated to a random set, Information sciences, 159, 109-123, (2004) · Zbl 1043.60011
[20] Davison, A.C.; Hinkley, D.V., Bootstrap methods and their applications, Cambridge series in statistics and probabilistic mathematics, (2003), Cambridge University Press · Zbl 0886.62001
[21] G. Debreu, Integration of correspondences, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, part 1, 1967, pp. 351-372. · Zbl 0211.52803
[22] Denoeux, T.; Masson, M.H.; Hebert, P.A., Nonparametric rank-based statistics and significance test for fuzzy data, Fuzzy sets and systems, 153, 1-28, (2005) · Zbl 1062.62075
[23] Feng, Y.; Hu, L.; Shu, H., The variance and covariance of fuzzy random variables and their applications, Fuzzy sets and systems, 120, 487-497, (2001) · Zbl 0984.60029
[24] S. Ferson, V. Kreinovich, J. Hajagos, W. Oberkampf, L. Ginzburg, Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty, Technical Report, SAND2007-0939, Unlimited Release, 2007.
[25] Filzmoser, P.; Viertl, R., Testing hypotheses with fuzzy data: the fuzzy p-value, Metrika, 59, 21-29, (2004) · Zbl 1052.62009
[26] J.L. Horowitz, C.F. Manski, Imprecise identification for incomplete data, in: Second International Symposium on Imprecise Probabilities and Their Applications (ISIPTA 2001), Ithaca, New York, 2001.
[27] Imbens, G.W.; Manski, C.F., Confidence intervals for partially identified parameters, Econometrica, 72, 1845-1857, (2004) · Zbl 1091.62015
[28] del Jesus, M.J.; Hoffmann, F.; Junco, L.; Sánchez, L., Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms, IEEE transactions on fuzzy systems, 12, 296-308, (2004)
[29] Kendall, D.G., Foundations of a theory of random sets, (), 322-376 · Zbl 0275.60068
[30] R. Körner, Linear Models with Fuzzy Random Variables, Ph.D. Thesis, 1997.
[31] Körner, R., On the variance of fuzzy random variables, Fuzzy sets and systems, 92, 83-93, (1997) · Zbl 0936.60017
[32] Körner, R., An asymptotic α-test for the expectation of random fuzzy variables, Journal of statistical planning and inference, 83, 331-346, (2000) · Zbl 0976.62013
[33] Kruse, R., On the variance of random sets, Journal of mathematical analysis and applications, 122, 469-473, (1987) · Zbl 0617.60013
[34] Kruse, R.; Meyer, K.D., Statistics with vague data, (1987), D. Reidel Publishing Company Dordrecht · Zbl 0663.62010
[35] Manski, C.F., Partial identification with missing data: concepts and findings, International journal of approximate reasoning, 39, 151-165, (2005) · Zbl 1066.62004
[36] Matheron, G., Random sets and integral geometry, (1975), Wiley New York · Zbl 0321.60009
[37] E. Miranda, I. Couso, P. Gil, Study of the probabilistic information of a random set, in: Proceedings of the Third International Symposium on Imprecise Probabilities and Their Applications (ISIPTA 2003), Lugano, Switzerland, 2003. · Zbl 1029.68135
[38] Miranda, E.; Couso, I.; Gil, P., Random intervals as a model for imprecise information, Fuzzy sets and systems, 154, 386-412, (2005) · Zbl 1079.60012
[39] Miranda, E.; Couso, I.; Gil, P., Random sets as imprecise random variables, Journal of mathematical analysis and applications, 307, 32-47, (2005) · Zbl 1077.60011
[40] Miranda, E.; Couso, I.; Gil, P., Approximations of upper and lower probabilities by measurable selections, Information sciences, 180, 1407-1417, (2010) · Zbl 1202.60011
[41] E. Miranda, G. de Cooman, I. Couso, Imprecise probabilities induced by multi-valued mappings, in: Ninth International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2002), Annecy, France, 2002. · Zbl 1101.68868
[42] Miranda, E.; de Cooman, G.; Couso, I., Lower previsions induced by multi-valued mappings, Journal of statistical planning and inference, 133, 173-197, (2005) · Zbl 1101.68868
[43] M. Montenegro, M.R. Casals, A. Colubi, M.A. Gil, Testing “two sided” hypothesis about the mean of an interval-valued random set, in: Fourth International Workshop on Soft Methods in Probability and Statistics (SMPS 2008), Toulouse, France, 2008.
[44] Nguyen, H.T., On random sets and belief functions, Journal of mathematical analysis and applications, 65, 531-542, (1978) · Zbl 0409.60016
[45] Palacios, A.M.; Sánchez, L.; Couso, I., Diagnosis of dyslexia with low quality data with genetic fuzzy systems, International journal of approximate reasoning, 51, 993-1009, (2010)
[46] Puri, M.; Ralescu, D., Fuzzy random variables, Journal of mathematical analysis and applications, 114, 409-422, (1986) · Zbl 0592.60004
[47] Rohatgi, V.K., An introduction to probability theory and mathematical statistics, (1976), John Wiley and Sons USA · Zbl 0354.62001
[48] Romano, J.P.; Shaikh, A.M., Inference for identifiable parameters in partially identified econometric models, Journal of statistical planning and inference, 138, 2786-2807, (2008) · Zbl 1141.62096
[49] Sánchez, L.; Couso, I., Advocating the use of imprecisely observed data in genetic fuzzy systems, IEEE transactions on fuzzy systems, 15, 551-562, (2007)
[50] L. Sánchez, I. Couso, J. Casillas, A multiobjective genetic fuzzy system with imprecise probability fitness for vague data, in: Second International Symposium on Evolving Fuzzy Systems 2006 (EFS 2006), Ambleside Lake District, UK, 2006, pp. 131-136.
[51] Sánchez, L.; Couso, I.; Casillas, J., Genetic learning of fuzzy rules based on low quality data, Fuzzy sets and systems, 160, 2524-2552, (2009) · Zbl 1191.68526
[52] Sánchez, L.; Suárez, M.R.; Villar, J.R.; Couso, I., Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data, International journal in approximate reasoning, 49, 607-622, (2008)
[53] J. Stoye, Statistical inference for interval identified parameters, in: Sixth International Symposium on Imprecise Probabilities: Theory and Applications (ISIPTA 2009), Durham, UK, 2009. · Zbl 1183.62053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.