×

zbMATH — the first resource for mathematics

Convenient analytic recurrence algorithms for the Adomian polynomials. (English) Zbl 1214.65064
Four analytic recurrence algorithms for multivariable Adomian polynomials are presented. Four simplified results for one-variable Adomian polynomials are deduced as special cases. These algorithms are comprised of simple, orderly and recurrence formulas, which do not require time-intensive operations such as expanding, regrouping, parametrization, and so on. They are straightforward to implement in any symbolic software.

MSC:
65Q30 Numerical aspects of recurrence relations
65Q10 Numerical methods for difference equations
65D20 Computation of special functions and constants, construction of tables
Software:
Mathematica
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G.; Rach, R., Inversion of nonlinear stochastic operators, J. math. anal. appl., 91, 39-46, (1983) · Zbl 0504.60066
[2] Adomian, G., Stochastic systems, (1983), Academic New York · Zbl 0504.60067
[3] Adomian, G., Nonlinear stochastic operator equations, (1986), Academic Orlando · Zbl 0614.35013
[4] Adomian, G., Nonlinear stochastic systems theory and applications to physics, (1989), Kluwer Academic Dordrecht · Zbl 0659.93003
[5] Adomian, G.; Rach, R.; Meyers, R.E., An efficient methodology for the physical sciences, Kybernetes, 20, 24-34, (1991) · Zbl 0744.65039
[6] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Dordrecht · Zbl 0802.65122
[7] Rach, R.; Adomian, G.; Meyers, R.E., A modified decomposition, Comput. math. appl., 23, 17-23, (1992) · Zbl 0756.35013
[8] Wazwaz, A.M., A reliable modification of Adomian decomposition method, Appl. math. comput., 102, 77-86, (1999) · Zbl 0928.65083
[9] Wazwaz, A.M.; El-Sayed, S.M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. math. comput., 122, 393-405, (2001) · Zbl 1027.35008
[10] Rach, R., A new definition of the Adomian polynomials, Kybernetes, 37, 910-955, (2008) · Zbl 1176.33023
[11] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education, Beijing, 2009. · Zbl 1175.35001
[12] Fang, J.Q.; Yao, W.G., Inverse operator method for solutions of nonlinear dynamical equations and some typical applications, Acta phys. sinica, 42, 1375-1384, (1993) · Zbl 0837.65072
[13] Wazwaz, A.M., Exact solutions to nonlinear diffusion equations obtained by the decomposition method, Appl. math. comput., 123, 109-122, (2001) · Zbl 1027.35019
[14] Yee, E., Application of the decomposition method to the solution of the reaction – convection – diffusion equation, Appl. math. comput., 56, 1-27, (1993) · Zbl 0773.76055
[15] Soliman, A.A.; Abdou, M.A., The decomposition method for solving the coupled modified KdV equations, Math. comput. model., 47, 1035-1041, (2008) · Zbl 1144.65318
[16] Biazar, J., Solution of systems of integral-differential equations by Adomian decomposition method, Appl. math. comput., 168, 1232-1238, (2005) · Zbl 1082.65594
[17] Shawagfeh, N.T.; Adomian, G., Non-perturbative analytical solution of the general lotka – volterra three-species system, Appl. math. comput., 76, 251-266, (1996) · Zbl 0846.65034
[18] Duan, J.S.; An, J.Y.; Xu, M.Y., Solution of system of fractional differential equations by Adomian decomposition method, Appl. math. J. chin. univ. B, 22, 7-12, (2007) · Zbl 1125.26008
[19] Cherruault, Y., Convergence of adomian’s method, Kybernetes, 18, 31-38, (1989) · Zbl 0697.65051
[20] Gabet, L., The theoretical foundation of the Adomian method, Comput. math. appl., 27, 41-52, (1994) · Zbl 0805.65056
[21] Abbaoui, K.; Cherruault, Y., Convergence of adomian’s method applied to differential equations, Comput. math. appl., 28, 103-109, (1994) · Zbl 0809.65073
[22] Abbaoui, K.; Cherruault, Y., New ideas for proving convergence of decomposition methods, Comput. math. appl., 29, 103-108, (1995) · Zbl 0832.47051
[23] Duan, J.S., Recurrence triangle for Adomian polynomials, Appl. math. comput., 216, 1235-1241, (2010) · Zbl 1190.65031
[24] Rach, R., A convenient computational form for the Adomian polynomials, J. math. anal. appl., 102, 415-419, (1984) · Zbl 0552.60061
[25] Riganti, R., On a class of nonlinear dynamical systems: the structure of a differential operator in the application of the decomposition method, J. math. anal. appl., 124, 189-199, (1987) · Zbl 0624.34036
[26] Wazwaz, A.M., A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. math. comput., 111, 53-69, (2000) · Zbl 1023.65108
[27] Abdelwahid, F., A mathematical model of Adomian polynomials, Appl. math. comput., 141, 447-453, (2003) · Zbl 1027.65072
[28] Biazar, J.; Babolian, E.; Kember, G.; Nouri, A.; Islam, R., An alternate algorithm for computing Adomian polynomials in special cases, Appl. math. comput., 138, 523-529, (2003) · Zbl 1027.65076
[29] Biazar, J.; Ilie, M.; Khoshkenar, A., An improvement to an alternate algorithm for computing Adomian polynomials in special cases, Appl. math. comput., 173, 582-592, (2006) · Zbl 1091.65053
[30] Zhu, Y.; Chang, Q.; Wu, S., A new algorithm for calculating Adomian polynomials, Appl. math. comput., 169, 402-416, (2005) · Zbl 1087.65528
[31] Azreg-Aı¨nou, M., A developed new algorithm for evaluating Adomian polynomials, Comput. model. eng. sci., 42, 1-18, (2009) · Zbl 1357.65067
[32] Duan, J.S.; Guo, A.P., Reduced polynomials and their generation in Adomian decomposition methods, Comput. model. eng. sci., 60, 139-150, (2010) · Zbl 1231.65132
[33] Choi, H.W.; Shin, J.G., Symbolic implementation of the algorithm for calculating Adomian polynomials, Appl. math. comput., 146, 257-271, (2003) · Zbl 1033.65036
[34] Chen, W.; Lu, Z., An algorithm for Adomian decomposition method, Appl. math. comput., 159, 221-235, (2004) · Zbl 1062.65059
[35] Pourdarvish, A., A reliable symbolic implementation of algorithm for calculating Adomian polynomials, Appl. math. comput., 172, 545-550, (2006) · Zbl 1088.65021
[36] Duan, J.S., An efficient algorithm for the multivariable Adomian polynomials, Appl. math. comput., 217, 2456-2467, (2010) · Zbl 1204.65022
[37] Adomian, G.; Rach, R., Generalization of Adomian polynomials to functions of several variables, Comput. math. appl., 24, 11-24, (1992) · Zbl 0765.34005
[38] Abbaoui, K.; Cherruault, Y.; Seng, V., Practical formulae for the calculus of multivariable Adomian polynomials, Math. comput. model., 22, 89-93, (1995) · Zbl 0830.65010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.