×

zbMATH — the first resource for mathematics

Further results on output-feedback regulation of stochastic nonlinear systems with SiISS inverse dynamics. (English) Zbl 1214.93105
Summary: This article further discusses the problem of output-feedback regulation for more general stochastic nonlinear systems with stochastic integral input-to-state stable inverse dynamics, and focuses on solving the important and unsolved problem proposed in [X. Yu and X. J. Xie, Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics, IEEE Trans. Automatic Control 55, 304–320 (2010)]: How to weaken the conditions on nonlinearities in drift and diffusion vector fields? Under the weaker conditions, how to make full use of the known information of stochastic nonlinear systems to design an adaptive output-feedback controller such that all the closed-loop signals are almost surely bounded and the output is driven to zero almost surely?

MSC:
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
93B52 Feedback control
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcorta MA, ICIC Express Letters 2 pp 371– (2008)
[2] Alcorta MA, International Journal of Innovative Computing, Information and Control 5 pp 1599– (2009)
[3] DOI: 10.1109/9.863594 · Zbl 0979.93106
[4] DOI: 10.1109/9.940927 · Zbl 1008.93068
[5] DOI: 10.1109/TAC.2006.882930 · Zbl 1366.93604
[6] DOI: 10.1109/TAC.2009.2037457 · Zbl 1368.93640
[7] DOI: 10.1109/TAC.2009.2028980 · Zbl 1367.93598
[8] DOI: 10.1109/TAC.2004.825663 · Zbl 1365.93177
[9] DOI: 10.1007/978-1-4612-0949-2
[10] DOI: 10.1007/978-94-009-9121-7
[11] Khalil HK, Nonlinear Systems,, 3. ed. (2002)
[12] Krstić M, Stabilization of Uncertain Nonlinear Systems (1998)
[13] DOI: 10.1016/j.automatica.2010.01.033 · Zbl 1193.93146
[14] DOI: 10.1016/j.automatica.2008.08.006 · Zbl 1158.93411
[15] DOI: 10.1016/j.automatica.2007.11.011 · Zbl 1283.93230
[16] Liu Y, ICIC Express Letters 3 pp 739– (2009)
[17] DOI: 10.1002/rnc.1255 · Zbl 1284.93241
[18] DOI: 10.1016/j.automatica.2006.08.028 · Zbl 1115.93076
[19] DOI: 10.1109/TAC.2010.2041611 · Zbl 1368.93790
[20] DOI: 10.1109/9.28018 · Zbl 0682.93045
[21] DOI: 10.1016/S0167-6911(98)00003-6 · Zbl 0902.93062
[22] DOI: 10.1002/rnc.724 · Zbl 1049.93086
[23] DOI: 10.1080/002071798221632 · Zbl 0953.93073
[24] Tsinias J, Systems and Control Letters 36 pp 221– (1999) · Zbl 0913.93067
[25] DOI: 10.1080/00207170600893004 · Zbl 1124.93057
[26] DOI: 10.1016/j.automatica.2006.10.020 · Zbl 1114.93104
[27] Wu LG, Automatica 46 pp 543– (2010) · Zbl 1194.93134
[28] DOI: 10.1002/rnc.1177 · Zbl 1127.93354
[29] DOI: 10.1109/TAC.2010.2043004 · Zbl 1368.93229
[30] DOI: 10.1109/TAC.2009.2034924 · Zbl 1368.93584
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.