Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces. (English) Zbl 1215.42007

Summary: This paper deals with ultradistributions for the Fourier sine (cosine) transform on a certain dual testing function space and tempered Boehmian and ultra-Boehmian spaces.


42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46F20 Distributions and ultradistributions as boundary values of analytic functions
46F99 Distributions, generalized functions, distribution spaces
46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.)
Full Text: DOI


[1] Banerji P. K., J. Math. Anal. Appl. 296 (2) pp 273– (2004) · Zbl 1046.42024
[2] Banerji P. K., Integral Transforms Spe. Func. 17 (11) pp 759– (2006) · Zbl 1131.42003
[3] Boehme T. K., Trans. Amer. Math. Soc. 176 pp 319– (1973)
[4] Gel’fand M., Generalized Functions 1 (1964)
[5] Mikusinski P., Japan J. Math. 9 (1) pp 159– (1983)
[6] Mikusinski , P. 1994.The Fourier Transform of Tempered Bohemians, Fourier Analysis, Lecture Notes in Pure and Applied Mathematics, 303–309. New York: Marcel Dekker.
[7] Sneddon I. N., The Use of Integral Transforms (1974) · Zbl 0237.44001
[8] Zemanian A. H., Distribution Theory and Transform Analysis (1987) · Zbl 0643.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.