×

zbMATH — the first resource for mathematics

Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. (English) Zbl 1215.74049
Summary: The global dynamics and topological integrity of the basins of attraction of a parametrically excited cylindrical shell are investigated through a two-degree-of-freedom reduced order model. This model, as shown in previous authors’ works, is capable of describing qualitatively the complex nonlinear static and dynamic buckling behavior of the shell. The discretized model is obtained by employing Donnell shallow shell theory and the Galerkin method. The shell is subjected to an axial static pre-loading and then to a harmonic axial load. When the static load is between the buckling load and the minimum post-critical load, a three potential well is obtained. Under these circumstances the shell may exhibit pre- and post-buckling solutions confined to each of the potential wells as well as large cross-well motions. The aim of the paper is to analyze in a systematic way the bifurcation sequences arising from each of the three stable static solutions, obtaining in this way the parametric instability and escape boundaries. The global dynamics of the system is analyzed through the evolution of the various basins of attraction in the four-dimensional phase space. The concepts of safe basin and integrity measures quantifying its magnitude are used to obtain the erosion profile of the various solutions. A detailed parametric analysis shows how the basins of the various solutions interfere with each other and how this influences the integrity measures. Special attention is dedicated to the topological integrity of the various solutions confined to the pre-buckling well. This allows one to evaluate the safety and dynamic integrity of the mechanical system. Two characteristic cases, one associated with a sub-critical parametric bifurcation and another with a super-critical parametric bifurcation, are considered in the analysis.

MSC:
74K25 Shells
37N15 Dynamical systems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Thompson, J.M.T.: Chaotic behavior triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989) · Zbl 0674.70035 · doi:10.1098/rspa.1989.0009
[2] Soliman, M.S., Thompson, J.M.T.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135, 453–475 (1989) · Zbl 1235.70106 · doi:10.1016/0022-460X(89)90699-8
[3] Lansbury, A.N., Thompson, J.M.T., Stewart, H.B.: Basin erosion in the twin-well Duffing oscillator: two distinct bifurcation scenarios. Int. J. Bifurc. Chaos 2, 505–532 (1992) · Zbl 0878.34034 · doi:10.1142/S0218127492000677
[4] Soliman, M.S., Thompson, J.M.T.: Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Phys. Rev. A 45, 3425–3431 (1992) · doi:10.1103/PhysRevA.45.3425
[5] Xu, J., Lu, Q., Huang, K.: Controlling erosion of safe basin in nonlinear parametrically excited systems. Acta Mech. Sin. 12, 281–288 (1996) · Zbl 0869.34023 · doi:10.1007/BF02486814
[6] Gan, C., Lu, Q., Huang, K.: Nonstationary effects on safe basins of a forced softening Duffing oscillator. Acta Mech. Sin. 11, 253–260 (1998)
[7] Souza, J.R. Jr., Rodrigues, M.L.: An investigation into mechanisms of loss of safe basins in a 2 D.O.F. nonlinear oscillator. J. Braz. Soc. Mech. Sci. Eng. 24, 93–98 (2002)
[8] Soliman, M.S., Gonçalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003) · doi:10.1006/jsvi.2002.5163
[9] de Freitas, M.S.T., Viana, R.L., Grebogi, C.: Erosion of the safe basin for the transversal oscillations of a suspension bridge. Chaos Solitons Fractals 18, 829–841 (2003) · Zbl 1129.74317 · doi:10.1016/S0960-0779(03)00035-3
[10] Lenci, S., Rega, G.: Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. J. Vib. Control 9, 281–316 (2003) · Zbl 1156.70314 · doi:10.1177/107754603030753
[11] Wu, X., Tao, L., Li, Y.: The safe basin erosion of a ship in waves with single degree of freedom. In: Proc. of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia, 13–17 December 2004
[12] Goncalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dyn. 50, 121–145 (2007) · Zbl 1181.74061 · doi:10.1007/s11071-006-9147-4
[13] McDonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries. Physica D 17, 125–153 (1985) · Zbl 0588.58033 · doi:10.1016/0167-2789(85)90001-6
[14] Yang, X.-S., Yang, S.S., Duan, C.K.: Intertwined basin of attraction in systems of ODE. Chaos Solitons Fractals 10, 1453–1456 (1999) · Zbl 0953.34050 · doi:10.1016/S0960-0779(98)00119-2
[15] Rega, G., Lenci, S.: Identifying, evaluating and controlling dynamical integrity measures in non-linear mechanical oscillators. Nonlinear Anal. 63, 902–914 (2005) · Zbl 1153.70307 · doi:10.1016/j.na.2005.01.084
[16] Rega, G., Lenci, S.: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14, 159–179 (2008) · Zbl 1229.70085 · doi:10.1177/1077546307079403
[17] Lenci, S., Rega, G.: A dynamical systems analysis of the overturning of rigid blocks. In: Proc. of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, Warsaw, Poland, 15–21 August 2004 (CD-Rom). ISBN 83-89687-01-1
[18] Lenci, S., Rega, G.: Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16, 390–401 (2006) · doi:10.1088/0960-1317/16/2/025
[19] Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33, 71–86 (2003) · Zbl 1038.70019 · doi:10.1023/A:1025509014101
[20] Lenci, S., Rega, G.: Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. ASME J. Comput. Nonlinear Dyn. 3, 1–9 (2008) · Zbl 1229.70085
[21] Rega, G., Troger, H.: Dimension reduction of dynamical systems: methods, models, applications. Nonlinear Dyn. 41, 1–15 (2005) · Zbl 1142.37320 · doi:10.1007/s11071-005-2790-3
[22] Amabili, M., Païdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56, 655–699 (2003)
[23] Popov, A.A., Thompson, J.M.T., McRobie, F.A.: Low dimensional models of shell vibration: parametrically excited vibrations of cylindrical shells. J. Sound Vib. 209, 163–186 (1998) · doi:10.1006/jsvi.1997.1279
[24] Gonçalves, P.B., Del Prado, Z.J.G.N.: Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37, 569–597 (2002) · Zbl 1100.74557 · doi:10.1023/A:1020972109600
[25] Gonçalves, P.B., Del Prado, Z.J.G.N.: Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41, 129–145 (2005) · Zbl 1142.74338 · doi:10.1007/s11071-005-2802-3
[26] Jansen, E.L.: Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis. Nonlinear Dyn. 39, 349–367 (2005) · Zbl 1142.74343 · doi:10.1007/s11071-005-4343-1
[27] Pellicano, F., Amabili, M.: Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads. J. Sound Vib. 293, 227–252 (2006) · doi:10.1016/j.jsv.2005.09.032
[28] Mallon, N.J., Fey, R.H.B., Nijmeijer, H.: Dynamic stability of a thin cylindrical shell with top mass subjected to harmonic base-acceleration. Int. J. Solids Struct. 45, 1587–1613 (2008) · Zbl 1159.74367 · doi:10.1016/j.ijsolstr.2007.10.011
[29] Croll, J.G.A., Batista, R.C.: Explicit lower bounds for the buckling of axially loaded cylinders. Int. J. Mech. Sci. 23, 331–343 (1981) · Zbl 0463.73036 · doi:10.1016/0020-7403(81)90063-1
[30] Hunt, G.W., Williams, K.A.J., Cowell, R.G.: Hidden symmetry concepts in the elastic buckling of axially-loaded cylinders. Int. J. Solids Struct. 22, 1501–1515 (1986) · Zbl 0607.73048 · doi:10.1016/0020-7683(86)90058-2
[31] Popov, A.A.: The application of Hamiltonian dynamics and averaging to nonlinear shell vibration. Comput. Struct. 82, 2659–2670 (2004) · doi:10.1016/j.compstruc.2004.03.078
[32] Bazant, Z.P., Cedolin, L.: Stability of Structures. Oxford Press, Oxford (1991)
[33] Gonçalves, P.B., Silva, F.M.A., Del Prado, Z.J.G.N.: Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition. J. Sound Vib. 315, 641–663 (2008) · doi:10.1016/j.jsv.2008.01.063
[34] Gonçalves, P.B., Batista, R.C.: Non-linear vibration analysis of fluid-filled cylindrical shells. J. Sound Vib. 127, 133–143 (1988) · Zbl 1235.74031 · doi:10.1016/0022-460X(88)90354-9
[35] Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge Press, Cambridge (2008) · Zbl 1154.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.