×

Stability and superstability of ring homomorphisms on non-archimedean Banach algebras. (English) Zbl 1216.39035

Summary: Using fixed point methods, we prove the superstability and generalized Hyers-Ulam stability of ring homomorphisms on non-Archimedean Banach algebras. Moreover, we investigate the superstability of ring homomorphisms in non-Archimedean Banach algebras associated with the Jensen functional equation.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] K. Hensel, “Über eine neue begründung der theorie der algebraischen zahlen,” in Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 6, pp. 83-88, 1897. · JFM 30.0096.03
[2] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, vol. 427 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. · Zbl 1050.81511
[3] L. M. Arriola and W. A. Beyer, “Stability of the Cauchy functional equation over p-adic fields,” Real Analysis Exchange, vol. 31, no. 1, pp. 125-132, 2006. · Zbl 1099.39019
[4] M. Eshaghi Gordji, “Nearly ring homomorphisms and nearly ring derivations on non-Archimedean banach algebras,” Abstract and Applied Analysis, vol. 2010, Article ID 393247, 12 pages, 2010. · Zbl 1218.46050
[5] M. Eshaghi Gordji and M. B. Savadkouhi, “Stability of cubic and quartic functional equations in non-Archimedean spaces,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1321-1329, 2010. · Zbl 1192.39018
[6] M. Eshaghi Gordji and M. B. Savadkouhi, “Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1198-1202, 2010. · Zbl 1204.39028
[7] M. Eshaghi Gordji, H. Khodaei, and R. Khodabakhsh, “General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces,” “Politehnica” University of Bucharest. Scientific Bulletin. Series A, vol. 72, no. 3, pp. 69-84, 2010. · Zbl 1249.39030
[8] L. Narici and E. Beckenstein, “Strange terrain-non-Archimedean spaces,” The American Mathematical Monthly, vol. 88, no. 9, pp. 667-676, 1981. · Zbl 0486.46054
[9] C. Park, D. H. Boo, and T. M. Rassias, “Approximately addtive mappings over p-adic fields,” Journal of Chungcheong Mathematical Society, vol. 21, pp. 1-14, 2008.
[10] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994. · Zbl 0864.46048
[11] N. Shilkret, Non-Archimedian Banach algebras, Ph.D. thesis, Polytechnic University, 1968, ProQuest LLC. · Zbl 0198.47501
[12] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publishers, New York, 1940. · Zbl 0086.24101
[13] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. · Zbl 0061.26403
[14] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. · Zbl 0040.35501
[15] T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. · Zbl 0398.47040
[16] D. G. Bourgin, “Classes of transformations and bordering transformations,” Bulletin of the American Mathematical Society, vol. 57, pp. 223-237, 1951. · Zbl 0043.32902
[17] P. G\uavru\cta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431-436, 1994. · Zbl 0818.46043
[18] R. Badora, “On approximate derivations,” Mathematical Inequalities & Applications, vol. 9, no. 1, pp. 167-173, 2006. · Zbl 1093.39024
[19] R. Farokhzad and S. A. R. Hosseinioun, “Perturbations of Jordan higher derivations in Banach ternary algebras: an alternative fixed point approach,” International Journal of Nonlinear Analysis and Applications, vol. 1, no. 1, pp. 42-53, 2010. · Zbl 1281.39037
[20] M. Eshaghi Gordji, M. B. Savadkouhi, and M. Bidkham, “Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces,” Journal of Computational Analysis and Applications, vol. 12, no. 2, pp. 454-462, 2010. · Zbl 1198.39037
[21] S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 204, no. 1, pp. 221-226, 1996. · Zbl 0888.46018
[22] C. Park and M. E. Gordji, “Comment on approximate ternary Jordan derivations on Banach ternary algebras,” Journal of Mathematical Physics, vol. 51, 7 pages, 2010, B. Savadkouhi, Journal of Mathematical Physics, vol. 50, article 042303, 2010. · Zbl 1214.46034
[23] C. Park and A. Najati, “Generalized additive functional inequalities in Banach algebras,” International Journal of Nonlinear Analysis and Applications, vol. 1, no. 2, pp. 54-62, 2010. · Zbl 1281.39032
[24] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. · Zbl 0482.47033
[25] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Bulletin des Sciences Mathématiques, vol. 108, no. 4, pp. 445-446, 1984. · Zbl 0599.47106
[26] J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989. · Zbl 0672.41027
[27] J. M. Rassias, “On the stability of the Euler-Lagrange functional equation,” Chinese Journal of Mathematics, vol. 20, no. 2, pp. 185-190, 1992. · Zbl 0789.46036
[28] J. M. Rassias, “Solution of a stability problem of Ulam,” Discussiones Mathematicae, vol. 12, pp. 95-103, 1992. · Zbl 0779.47005
[29] J. M. Rassias, “Complete solution of the multi-dimensional problem of Ulam,” Discussiones Mathematicae, vol. 14, pp. 101-107, 1994. · Zbl 0819.39012
[30] P. G\uavruta, “An answer to a question of John. M. Rassias concerning the stability of Cauchy equation,” in Advances in Equations and Inequalities, Hardronic MaT. Series, pp. 67-71, 1999.
[31] D. G. Bourgin, “Approximately isometric and multiplicative transformations on continuous function rings,” Duke Mathematical Journal, vol. 16, pp. 385-397, 1949. · Zbl 0033.37702
[32] R. Badora, “On approximate ring homomorphisms,” Journal of Mathematical Analysis and Applications, vol. 276, no. 2, pp. 589-597, 2002. · Zbl 1014.39020
[33] J. Baker, J. Lawrence, and F. Zorzitto, “The stability of the equation f(x+y)=f(x)f(y),” Proceedings of the American Mathematical Society, vol. 74, no. 2, pp. 242-246, 1979. · Zbl 0397.39010
[34] M. Eshaghi Gordji, T. Karimi, and S. Kaboli Gharetapeh, “Approximately n-Jordan homomorphisms on Banach algebras,” Journal of Inequalities and Applications, vol. 2009, Article ID 870843, 8 pages, 2009. · Zbl 1162.39017
[35] M. Eshaghi Gordji and A. Najati, “Approximately J\ast -homomorphisms: a fixed point approach,” Journal of Geometry and Physics, vol. 60, no. 5, pp. 809-814, 2010. · Zbl 1192.39020
[36] C.-G. Park, “Homomorphisms between Lie JC\ast -algebras and Cauchy-Rassias stability of Lie JC\ast -algebra derivations,” Journal of Lie Theory, vol. 15, no. 2, pp. 393-414, 2005. · Zbl 1091.39006
[37] C.-G. Park, “Lie \ast -homomorphisms between Lie C\ast -algebras and Lie \ast -derivations on Lie C\ast -algebras,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 419-434, 2004. · Zbl 1051.46052
[38] J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative, for contractions on a generalized complete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305-309, 1968. · Zbl 0157.29904
[39] I. A. Rus, Principles and Applications of Fixed Point Theory, Dacia, Cluj-Napoca, Romania, 1979. · Zbl 0427.54024
[40] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Boston, Mass, USA, 1998. · Zbl 0907.39025
[41] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, New York, NY, USA, 1986. · Zbl 0583.47050
[42] V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol. 4, no. 1, pp. 91-96, 2003. · Zbl 1051.39031
[43] L. C\uadariu and V. Radu, “Fixed points and the stability of Jensen’s functional equation,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, p. 7, 2003. · Zbl 1043.39010
[44] L. C\uadariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,” in Iteration Theory, vol. 346, pp. 43-52, Karl-Franzens-Universitaet Graz, 2004. · Zbl 1060.39028
[45] L. C\uadariu and V. Radu, “Fixed point methods for the generalized stability of functional equations in a single variable,” Fixed Point Theory and Applications, vol. 2008, Article ID 749392, 15 pages, 2008. · Zbl 1146.39040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.