×

zbMATH — the first resource for mathematics

Summability in topological spaces. (English) Zbl 1216.40009
Summary: The main purpose of the paper is to introduce the notion of summability in abstract Hausdorff topological spaces. We give a characterization of such summability methods when the space allows a countable base. We also provide several Tauberian theorems in topological structures. Some open problems are discussed.

MSC:
40J05 Summability in abstract structures
40E05 Tauberian theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hardy, G.H., Divergent series, (1949), Oxford University Press Oxford · Zbl 0032.05801
[2] Chung, K.L., A course in probability theory, (1974), Academic Press New York · Zbl 0159.45701
[3] A. Zygmund, Trigonometric Series, vol. I, Cambridge, 1959. · Zbl 0085.05601
[4] Komlós, J., A generalization of a problem of Steinhaus, Acta math. acad. sci. hungar, 18, 217-229, (1967) · Zbl 0228.60012
[5] Prullage, D.L., Summability in topological groups, Math. Z., 96, 259-279, (1967) · Zbl 0142.02401
[6] Prullage, D.L., Summability in topological groups II, Math. Z., 103, 129-138, (1968) · Zbl 0153.38701
[7] Prullage, D.L., Summability in topological groups III (metric properties), J. anal. math., 22, 221-231, (1969) · Zbl 0182.08501
[8] Prullage, D.L., Summability in topological groups IV (convergence fields), Tôhoku math. J., 21, 159-169, (1969) · Zbl 0192.41601
[9] Çakalli, H., Lacunary statistical convergence in topological groups, Indian J. pure appl. math., 26, 113-119, (1995) · Zbl 0835.43006
[10] Çakalli, H., On statistical convergence in topological groups, Pure appl. math. sci., 43, 27-31, (1996) · Zbl 0876.40002
[11] Buck, R.C., The measure theoretic approach to density, Amer. J. math., 68, 560-580, (1946) · Zbl 0061.07503
[12] Fast, H., Sur la convergence statistique, Colloq. math., 2, 241-244, (1951) · Zbl 0044.33605
[13] Buck, R.C., Generalized asymptotic density, Amer. J. math., 75, 335-346, (1953) · Zbl 0050.05901
[14] Salat, T., On statistically convergent sequences of real numbers, Math. slovaca, 30, 2, 139-150, (1980) · Zbl 0437.40003
[15] Fridy, J.A., On statistical convergence, Analysis, 5, 301-313, (1985) · Zbl 0588.40001
[16] Fridy, J.A.; Miller, H.I., A matrix characterization of statistical convergence, Analysis, 11, 59-66, (1991) · Zbl 0727.40001
[17] Khan, M.K.; Orhan, C., Matrix characterization of \(A\)-statistical convergence, J. math. anal. appl., 335, 406-417, (2007) · Zbl 1123.40003
[18] Lahiri, B.K.; Das, P., \(I\) and \(I^\ast\)-convergence in topological spaces, Math. bohem., 130, 2, 153-160, (2005) · Zbl 1111.40001
[19] Fridy, J.A.; Khan, M.K., Statistical gap Tauberian theorems in metric spaces, J. math. anal. appl., 282, 744-755, (2003) · Zbl 1024.40003
[20] Erdös, P., On a high-indices theorem in Borel summability, Acta math. acad. sci. hungar, 7, 265-281, (1956) · Zbl 0074.04602
[21] Levinson, N., Gap and density theorems, (1940), AMS Colloquium Publications · JFM 66.0332.01
[22] Fridy, J.A.; Khan, M.K., Tauberian theorems via statistical convergence, J. math. anal. appl., 228, 73-95, (1998) · Zbl 0919.40006
[23] Fridy, J.A.; Khan, M.K., Characterizations of density Tauberian theorems, Analysis, 18, 145-156, (1998) · Zbl 0930.40002
[24] Connor, J., Gap Tauberian theorems, Bull. aust. math. soc., 47, 385-393, (1993) · Zbl 0777.40003
[25] Çakalli, H., Sequential definitions of compactness, Appl. math. lett., 21, 6, 594-598, (2008) · Zbl 1145.54001
[26] Çakalli, H.; Das, Pratulananda, Fuzzy compactness via summability, Appl. math. lett., 22, 11, 1665-1669, (2009) · Zbl 1180.54010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.