zbMATH — the first resource for mathematics

Numerical study of influence of molecular diffusion in the mild combustion regime. (English) Zbl 1216.80014
Summary: The importance of molecular diffusion versus turbulent transport in the moderate or intense low-oxygen dilution (Mild) combustion mode has been numerically studied. The experimental conditions of B. B. Dally, A. N. Karpetis and R. S. Barlow [“Structure of turbulent non-premixed jet flames in a diluted hot co-flow”, Proc. Combust. Inst. 29, 1147–1154 (2002)] were used for modelling. The EDC model was used to describe the turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI 2.11 full mechanism were used to represent the chemical reactions of an H\(_{2}/\)methane jet flame. The importance of molecular diffusion for various O\(_{2}\) levels, jet Reynolds numbers and H\(_{2}\) fuel contents was investigated. Results show that the molecular diffusion in Mild combustion cannot be ignored in comparison with the turbulent transport. Also, the method of inclusion of molecular diffusion in combustion modelling has a considerable effect on the accuracy of numerical modelling of Mild combustion. By decreasing the jet Reynolds number, decreasing the oxygen concentration in the airflow or increasing H\(_{2}\) in the fuel mixture, the influence of molecular diffusion on Mild combustion increases.

80A25 Combustion
80A32 Chemically reacting flows
76F25 Turbulent transport, mixing
Full Text: DOI
[1] DOI: 10.1038/233239a0 · doi:10.1038/233239a0
[2] Gupta, A. K. and Li, Z. Effect of fuel property on the structure of highly preheated air flames. Proc. Int. Joint Power Generation Conference, ASME EC. vol. 5, pp.247–258.
[3] Gupta, A. K. Flame characteristics and challenges with high temperature air combustion. Proc. Int. Joint Power Generation Conference (IJPGC). Miami, FL.
[4] DOI: 10.1016/j.pecs.2004.02.003 · doi:10.1016/j.pecs.2004.02.003
[5] Ito, Y., Gupta, A. K., Yoshikawa, K. and Shimo, N. Combustion characteristics of low calorific value gas with high temperature and low-oxygen concentration air. Proc. 5th High Temperature Air Combustion and Gasification Conference. Yokohama, Japan.
[6] Tsuji H., High temperature air combustion: from energy conservation to pollution reduction (2003)
[7] DOI: 10.1115/1.2436558 · doi:10.1115/1.2436558
[8] DOI: 10.2514/2.5943 · doi:10.2514/2.5943
[9] Gupta, A. K. Flame length and ignition delay during the combustion of acetylene in high temperature air. Invited paper, Proc. 5th High Temperature Air Combustion and Gasification Conference. Yokohama, Japan.
[10] Wünning, J. G. Flameless combustion in thermal process technology. 2th International Seminar on High Temperature Air Combustion. Sweden.
[11] Katsuki, M. and Hasegawa, T. The science and technology of combustion in highly preheated air. 27th Symposium (International) on Combustion/The Combustion Institute. pp.3135–3146.
[12] Plessing, T., Peters, N. and Wünning, J. G. Laser optical investigation of highly preheated combustion with strong exhaust gas recirculation. 27th Symposium (International) on Combustion/The Combustion Institute. pp.3197–3204.
[13] Kuo, K. K. 1986.Principles of combustion, 430New York: John Wiley & Sons.
[14] DOI: 10.1016/0010-2180(94)00066-2 · doi:10.1016/0010-2180(94)00066-2
[15] DOI: 10.1016/j.combustflame.2005.08.017 · doi:10.1016/j.combustflame.2005.08.017
[16] DOI: 10.1016/j.combustflame.2005.03.002 · doi:10.1016/j.combustflame.2005.03.002
[17] DOI: 10.1016/j.proci.2004.08.161 · doi:10.1016/j.proci.2004.08.161
[18] DOI: 10.1016/j.ijhydene.2008.09.058 · doi:10.1016/j.ijhydene.2008.09.058
[19] DOI: 10.1016/S1540-7489(02)80145-6 · doi:10.1016/S1540-7489(02)80145-6
[20] DOI: 10.1080/10407799608915084 · doi:10.1080/10407799608915084
[21] DOI: 10.1016/S0082-0784(00)80621-9 · doi:10.1016/S0082-0784(00)80621-9
[22] Magnussen, B. F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th AIAA Meeting. St. Louis, MO.
[23] Gran I. R., Combust. Sci. Technol. 191 pp 119– (1996)
[24] Yang, W., Wei, D. and Blasiak, W. 2003.Mathematics modeling for high temperature air combustion (HiTAC), 35–51. Royal Institute of Technology (KTH). Summary Final Report
[25] Kazakov A., Reduced reaction sets based on GRIMech1.2
[26] Frenklach M., GRI-1.2
[27] Smith G. P., GRI-3.0.
[28] Bowman C. T., GRI-2.11. (1995)
[29] DOI: 10.1080/00102208108946970 · doi:10.1080/00102208108946970
[30] Bird, R. B., Stewart, W. E. and Lightfoot, E. N. 2002.Transport phenomena,, 2nd ed., 26276659New York: John Wiley & Sons.
[31] Warnatz J., Combustion (1996)
[32] Taylor R., Multicomponent mass transfer (1993)
[33] DOI: 10.1007/BF00411741 · Zbl 0089.19302 · doi:10.1007/BF00411741
[34] DOI: 10.1016/0010-2180(90)90122-8 · doi:10.1016/0010-2180(90)90122-8
[35] DOI: 10.1016/j.pecs.2003.10.001 · doi:10.1016/j.pecs.2003.10.001
[36] DOI: 10.1016/j.combustflame.2007.03.007 · doi:10.1016/j.combustflame.2007.03.007
[37] DOI: 10.1016/S0010-2180(00)00135-8 · doi:10.1016/S0010-2180(00)00135-8
[38] DOI: 10.1016/j.combustflame.2006.10.002 · doi:10.1016/j.combustflame.2006.10.002
[39] DOI: 10.1016/S0010-2180(97)00209-5 · doi:10.1016/S0010-2180(97)00209-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.