zbMATH — the first resource for mathematics

Some sum relations involving Bernoulli and Euler polynomials. (English) Zbl 1217.11021
The classical Bernoulli polynomials and Euler polynomials are defined by means of the following generating functions: $\frac{ze^{xz}}{e^{z}-1}=\sum_{n=0}^{\infty }B_{n}(x) \frac{z^{n}}{n!}\quad ( \left| z\right| <2\pi)$ and $\frac{2e^{xz}}{e^{z}+1}=\sum_{n=0}^{\infty }E_{n}(x) \frac{z^{n}}{n!}\quad ( \left | z \right | <\pi)$ respectively. Obviously, $$B_{n}:=B_{n}(0), \;E_{n}:=2^nE_{n}\left(\frac12\right)$$ are the corresponding Bernoulli numbers and the Euler numbers, respectively.
In the present paper, the authors obtain several symmetric identities for the Bernoulli polynomials and Euler polynomials using the generating function method.

MSC:
 11B68 Bernoulli and Euler numbers and polynomials 39A70 Difference operators
Full Text:
References:
  Abramowitz, M. and Stegun, I. A. 1972.Handbook of Mathematical Functions, 804–808. New York: Dover Publications. · Zbl 0543.33001  DOI: 10.1016/j.jnt.2003.08.010 · Zbl 1073.11013  He Y., Fibonacci Quart. 46 pp 225– (2008)  He Y., Electronic J. Combin. 17 (2010)  Ireland K., A Classical Introduction to Mordern Number Theory, 2. ed. (1990) · Zbl 0712.11001  DOI: 10.1016/0022-314X(78)90026-4 · Zbl 0379.10007  DOI: 10.1007/BF02401755 · JFM 47.0216.05  DOI: 10.1016/j.jcta.2005.07.008 · Zbl 1085.05017  DOI: 10.1007/1-4020-2547-5  DOI: 10.2206/kyushumfs.36.73 · Zbl 0507.12011  Srivastava H. M., Series Associated with the Zeta and Related Functions (2001) · Zbl 1014.33001  DOI: 10.1016/S0893-9659(04)90077-8 · Zbl 1070.33012  DOI: 10.1016/S0195-6698(03)00062-3 · Zbl 1024.05010  DOI: 10.1112/jlms/s2-20.1.101 · Zbl 0406.12009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.