Diophantine properties for \(q\)-analogues of Dirichlet’s beta function at positive integers. (English) Zbl 1217.11069

Let the \(q\)-analogue of Dirichlet’s beta function be defined by \[ \beta_q(s)= \sum_{k\geq 1}\,\sum_{d|k}\chi(k/d)\,d^{s-1}\,q^k, \] where \(s\) is a positive integer, \(q\) a complex number with \(|q|< 1\), and \(\chi\) is the nontrivial Dirichlet character modulo 4. The authors of this very interesting paper give a lower bound for the dimension of the vector space over \(\mathbb{Q}\) spanned by \(1,\beta_q(2),\beta_q(4),\dots, \beta_q(2m)\), where \(1/q\in\mathbb{Z}\setminus\{-1,1\}\) and \(m\) is a positive integer. One of the consequences of this theorem shows that at least one of the numbers \(\beta_q(2),\beta_q(3),\dots, \beta_q(20)\) is irrational, and that the sequence \((\beta_q(2m))\) contains infinitely many irrational numbers.


11J72 Irrationality; linear independence over a field
11M41 Other Dirichlet series and zeta functions
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
Full Text: DOI arXiv


[1] Apéry (R.), Irrationalité de \( \zeta(2)\) et \( \zeta(3)\), Astérisque 61 (1979), 11-13. · Zbl 0401.10049
[2] Peter Bundschuh and Keijo Väänänen, Arithmetical investigations of a certain infinite product, Compositio Math. 91 (1994), no. 2, 175 – 199. · Zbl 0802.11027
[3] Peter Bundschuh and Wadim Zudilin, Rational approximations to a \?-analogue of \? and some other \?-series, Diophantine approximation, Dev. Math., vol. 16, SpringerWienNewYork, Vienna, 2008, pp. 123 – 139. · Zbl 1213.11146
[4] Peter Bundschuh and Wadim Zudilin, Irrationality measures for certain \?-mathematical constants, Math. Scand. 101 (2007), no. 1, 104 – 122. · Zbl 1153.11034
[5] George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. · Zbl 1129.33005
[6] Jouhet (F.) and Mosaki (E.), Irrationalité aux entiers impairs positifs d’un \( q\)-analogue de la fonction zêta de Riemann, Int. J. Number Theory, to appear. · Zbl 1204.11110
[7] Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. Neal Koblitz, Introduction to elliptic curves and modular forms, 2nd ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. · Zbl 0553.10019
[8] C. Krattenthaler and T. Rivoal, On a linear form for Catalan’s constant, South East Asian J. Math. Math. Sci. 6 (2008), no. 2, 3 – 15. · Zbl 1217.11070
[9] C. Krattenthaler, T. Rivoal, and W. Zudilin, Séries hypergéométriques basiques, \?-analogues des valeurs de la fonction zêta et séries d’Eisenstein, J. Inst. Math. Jussieu 5 (2006), no. 1, 53 – 79 (French, with English and French summaries). · Zbl 1089.11038
[10] Nesterenko (Yu. V.), On the linear independance of numbers (in Russian) Vest. Mosk. Univ., Ser. I, no. 1 (1985), 46-54; English transl. in Mosc. Univ. Math. Bull. 40.1 (1985), 69-74.
[11] Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65 – 96 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 9, 1319 – 1348. · Zbl 0898.11031
[12] Tanguy Rivoal, Nombres d’Euler, approximants de Padé et constante de Catalan, Ramanujan J. 11 (2006), no. 2, 199 – 214 (French, with French summary). · Zbl 1152.11337
[13] T. Rivoal and W. Zudilin, Diophantine properties of numbers related to Catalan’s constant, Math. Ann. 326 (2003), no. 4, 705 – 721. · Zbl 1028.11046
[14] Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. · Zbl 0889.05001
[15] Walter Van Assche, Little \?-Legendre polynomials and irrationality of certain Lambert series, Ramanujan J. 5 (2001), no. 3, 295 – 310. · Zbl 1035.11032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.