zbMATH — the first resource for mathematics

Linear superposition principle applying to Hirota bilinear equations. (English) Zbl 1217.35164
Summary: A linear superposition principle of exponential traveling waves is analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of \(N\)-soliton solutions formed by linear combinations of exponential traveling waves. Applications are made for the \(3+1\) dimensional KP, Jimbo-Miwa and BKP equations, thereby presenting their particular \(N\)-wave solutions. An opposite question is also raised and discussed about generating Hirota bilinear equations possessing the indicated \(N\)-wave solutions, and a few illustrative examples are presented, together with an algorithm using weights.

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
Full Text: DOI
[1] Ma, W.X., Diversity of exact solutions to a restricted boiti – leon – pempinelli dispersive long-wave system, Phys. lett. A, 319, 325-333, (2003) · Zbl 1030.35021
[2] Hu, H.C.; Tong, B.; Lou, S.Y., Nonsingular positon and complexiton solutions for the coupled KdV system, Phys. lett. A, 351, 403-412, (2006) · Zbl 1187.35196
[3] Hirota, R., The direct method in soliton theory, (2004), Cambridge University Press
[4] Fordy, A.P., Soliton theory: A survey of results. nonlinear science: theory and applications, (1990), Manchester University Press Manchester
[5] Hietarinta, J., Hirota’s bilinear method and soliton solutions, Phys. AUC, 15, part 1, 31-37, (2005)
[6] Ma, W.X.; Srampp, W., Bilinear forms and Bäcklund transformations of the perturbation systems, Phys. lett. A, 341, 441-449, (2005) · Zbl 1171.37332
[7] Ma, W.X., Integrability, (), 450-453
[8] Ablowitz, M.J.; Segur, H., On the evolution of packets of water waves, J. fuid mech., 92, 691-715, (1979) · Zbl 0413.76009
[9] Infeld, E.; Rowlands, G., Three-dimensional stability of korteweg – de Vries waves and solitons II, Acta phys. polon. A, 56, 329-332, (1979)
[10] Jimbo, M.; Miwa, T., Solitons and infinite dimensional Lie algebras, Publ. res. inst. math. sci., 19, 943-1001, (1983) · Zbl 0557.35091
[11] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations VI—KP hierarchies of orthogonal and symplectic type, J. phys. soc. Japan, 50, 3813-3818, (1981) · Zbl 0571.35102
[12] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations IV—a new hierarchy of soliton equations of KP-type, Physica D, 4, 343-365, (1981/1982) · Zbl 0571.35100
[13] Ma, W.X.; Zhou, R.G.; Gao, L., Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions, Modern phys. lett. A, 21, 1677-1688, (2009) · Zbl 1168.35426
[14] Fan, E.G., Quasi-periodic waves and an asymptotic property for the asymmetrical nizhnik – novikov – veselov equation, J. phys. A: math. theor., 42, 095206, (2009) · Zbl 1165.35044
[15] Fan, E.G., Supersymmetric kdv – sawada – kotera – ramani equation and its quasi-periodic wave solutions, Phys. lett. A, 374, 744-749, (2010) · Zbl 1235.35242
[16] Hirota, R.; Ohta, Y.; Satsuma, J., Wronskian structures of solutions for soliton equations, Recent developments in soliton theory, Progr. theoret. phys. suppl., 94, 59-72, (1988)
[17] Ma, W.X.; You, Y., Solving the korteweg – de Vries equation by its bilinear form: Wronskian solutions, Trans. amer. math. soc., 357, 1753-1778, (2005) · Zbl 1062.37077
[18] Hu, X.B.; Zhao, J.X., Commutativity of pfaffianization and Bäcklund transformations: the KP equation, Inverse problems, 21, 1461-1472, (2005) · Zbl 1086.35091
[19] Konopelchenko, B.; Strampp, W., The AKNS hierarchy as symmetry constraint of the KP hierarchy, Inverse problems, 7, L17-L24, (1991) · Zbl 0728.35111
[20] Lin, R.L.; Zeng, Y.B.; Ma, W.X., Solving the KdV hierarchy with self-consistent sources by inverse scattering method, Physica A, 291, 287-298, (2001) · Zbl 0972.35128
[21] Liu, X.J.; Zeng, Y.B.; Lin, R.L., A new extended KP hierarchy, Phys. lett. A, 372, 3819-3823, (2008) · Zbl 1220.37055
[22] Ma, W.X., An extended Harry Dym hierarchy, J. phys. A: math. theor., 43, 165202, (2010) · Zbl 1200.37062
[23] Ma, W.X., Commutativity of the extended KP flows, Commun. nonlinear sci. numer. simul., 16, 722-730, (2011) · Zbl 1221.37134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.