×

zbMATH — the first resource for mathematics

Application of He’s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate. (English) Zbl 1217.76029
Summary: In this Letter, the problem of forced convection over a horizontal flat plate is presented and the homotopy perturbation method (HPM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the homotopy perturbation method in comparison with the previous ones in solving heat transfer problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear conclusion can be drawn from the numerical results that the HPM provides highly accurate numerical solutions for nonlinear differential equations.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76E06 Convection in hydrodynamic stability
80A20 Heat and mass transfer, heat flow (MSC2010)
35Q35 PDEs in connection with fluid mechanics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] He, J.H., Non-perturbative methods for strongly nonlinear problems, (2006), dissertation.de-Verlag im Internet GmbH Berlin
[2] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[3] He, J.H., Phys. lett. A, 350, 1-2, 87, (2006)
[4] He, J.H., Chaos solitons fractals, 26, 3, 695, (2005)
[5] He, J.H., J. comput. math. appl. mech. eng., 167, 57, (1998)
[6] He, J.H., Comput. math. appl. mech. eng., 167, 69, (1998)
[7] He, J.H., Int. J. non-linear mech., 344, 699, (1999)
[8] He, J.H., J. comput. math. appl. mech. eng., 17, 8, 257, (1999)
[9] He, J.H., Int. J. non-linear mech., 351, 37, (2000)
[10] He, J.H.; Wu, X.H., Chaos solitons fractals, 29, 1, 108, (2006)
[11] He, J.H., Phys. lett. A, 347, 4-6, 228, (2005)
[12] He, J.H., Chaos solitons fractals, 26, 3, 827, (2005)
[13] He, J.H., Int. J. nonlinear sci. numer. simul., 6, 2, 207, (2005)
[14] Ariel, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simul., 7, 4, 399, (2006)
[15] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 411, (2006)
[16] Rafei, M.; Ganji, D.D., Int. J. nonlinear sci. numer. simul., 7, 3, 321, (2006)
[17] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Int. J. nonlinear sci. numer. simul., 7, 1, 7, (2006)
[18] Siddiqui, A.M.; Ahmed, M.; Ghori, Q.K., Int. J. nonlinear sci. numer. simul., 7, 1, 15, (2006)
[19] Beléndez, A.; Hernández, T., Int. J. nonlinear sci. numer. simul., 8, 1, 79, (2007)
[20] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (20 July 2006)
[21] Cai, X.C.; Wu, W.Y.; Li, M.S., Int. J. nonlinear sci. numer. simul., 7, 1, 109, (2006)
[22] Cveticanin, L., Chaos solitons fractals, 30, 5, 1221, (2006)
[23] El-Shahed, M., Int. J. nonlinear sci. numer. simul., 6, 2, 163, (2005)
[24] Abbasbandy, S., Chaos solitons fractals, 30, 5, 1206, (2006)
[25] Ganji, D.D.; Rafei, M., Phys. lett. A, 356, 2, 131, (2006) · Zbl 1160.35517
[26] Ganji, D.D.; Rajabi, A., Int. commun. heat mass transfer, 33, 3, 391, (2006)
[27] Ganji, D.D., Phys. lett. A, 355, 4-5, 337, (2006)
[28] Kays, W.M.; Crawford, M.E., Convective heat and mass transfer, 3/e, (1993), McGraw-Hill New York
[29] Bejan, A., Convection heat transfer, (1995), Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.