zbMATH — the first resource for mathematics

New subclasses of bi-univalent functions. (English) Zbl 1218.30024
Summary: We introduce two new subclasses of the function class \(\varSigma \) of bi-univalent functions defined in the open unit disc. Furthermore, we find estimates on the coefficients \(|a_{2}|\) and \(|a_{3}|\) for functions in these new subclasses.

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI
[1] Ding, S.S.; Ling, Y.; Bao, G.J., Some properties of a class of analytic functions, J. math. anal. appl., 195, 1, 71-81, (1995) · Zbl 0843.30022
[2] MacGregor, T.H., Functions whose derivative has a positive real part, Trans. amer. math. soc., 104, 532-537, (1962) · Zbl 0106.04805
[3] Chen, M., On the regular functions satisfying \(\operatorname{Re}(f(z) / z) > \alpha\), Bull. inst. math. acad. sinica, 3, 65-70, (1975) · Zbl 0313.30012
[4] Chichra, P.N., New subclasses of the class of close-to-convex functions, Proc. amer. math. soc., 62, 37-43, (1977) · Zbl 0355.30013
[5] Srivastava, H.M.; Mishra, A.K.; Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. math. lett., 23, 1188-1192, (2010) · Zbl 1201.30020
[6] Brannan, D.A.; Taha, T.S., On some classes of bi-univalent functions, (), 53-60, see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77 · Zbl 0614.30017
[7] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
[8] Brannan, D.A.; Clunie, J.; Kirwan, W.E., Coefficient estimates for a class of starlike functions, Canad. J. math., 22, 476-485, (1970) · Zbl 0197.35602
[9] Pommerenke, Ch., Univalent functions, (1975), Vandenhoeck and Rupercht Göttingen · Zbl 0283.30034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.