A general hazard model for lifetime data in the presence of cure rate. (English) Zbl 1218.62116

Summary: Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by J. Berkson and R. P. Gage [J. Am. Stat. Assoc. 47, 501–515 (1952)]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. We propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.


62P10 Applications of statistics to biology and medical sciences; meta analysis
62N02 Estimation in survival analysis and censored data
65C60 Computational problems in statistics (MSC2010)
92C50 Medical applications (general)


Full Text: DOI


[1] DOI: 10.2307/2281318
[2] DOI: 10.1016/S0140-6736(96)91486-5
[3] Boag J. W., J. R. Statist. Soc. Ser. B 11 pp 15– (1949)
[4] DOI: 10.1111/j.0006-341X.2001.00043.x · Zbl 1209.62022
[5] Cox D. R., J. R. Statist. Soc. B pp 187– (1972)
[6] Cox D. R., Theoretical Statistics (1974) · Zbl 0334.62003
[7] DOI: 10.1093/biomet/64.1.43 · Zbl 0348.62048
[8] DOI: 10.2307/2529885
[9] DOI: 10.2307/3314804
[10] DOI: 10.1002/sim.4780090814
[11] DOI: 10.1128/CMR.14.2.327-335.2001
[12] DOI: 10.1080/02331889208802379 · Zbl 0811.62034
[13] DOI: 10.1006/jmva.1994.1023 · Zbl 0805.62028
[14] DOI: 10.1002/sim.4780140106
[15] Greenhouse J. B., Commun. Stat. Theory Methods 25 pp 3133– (1984)
[16] DOI: 10.1080/03610919008812885 · Zbl 0718.62234
[17] DOI: 10.1002/(SICI)1097-0258(19970815)16:15<1683::AID-SIM600>3.0.CO;2-4
[18] DOI: 10.1109/TR.2002.805788
[19] Lange K., Numerical Analysis for Statisticians (1999) · Zbl 0920.62001
[20] DOI: 10.1111/j.1467-9876.2006.00538.x · Zbl 05188732
[21] Lawless J. F., Statistical Models and Methods for Lifetime Data (2003) · Zbl 1015.62093
[22] MacKenzie G., J. R. Statist. Soc. B 45 pp 21– (1996)
[23] MacKenzie, G.A logistic model for survival data. Proceedings of the 17th International Workshop in Statistical Modelling. pp.431–438.
[24] DOI: 10.2307/2533253 · Zbl 0875.62516
[25] Maller R. A., Survival Analysis with Long-Term Survivors (1996) · Zbl 1151.62350
[26] DOI: 10.1002/(SICI)1097-0258(19980430)17:8<813::AID-SIM775>3.0.CO;2-#
[27] DOI: 10.1002/sim.2729
[28] DOI: 10.1016/S0167-9473(02)00178-0 · Zbl 1429.62086
[29] R: A Language and Environment for Statistical Computing (2008)
[30] Silva, A. N.F. 2006. ”Estudo evolutivo das crianças expostas ao HIV e notificadas pelo Núcleo de Vigilância Epidemiológica do HCFMRP-USP”. Brazil (in Portuguese): Medicine school of Ribeirão Preto, University of São Paulo. Master thesis
[31] DOI: 10.1002/sim.987
[32] DOI: 10.1080/02331889508802521 · Zbl 0863.62015
[33] DOI: 10.1002/bimj.200710399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.