×

zbMATH — the first resource for mathematics

Adaptive algorithm to compensate parametrically uncertain biased disturbance of a linear plant with delay in the control channel. (English. Russian original) Zbl 1218.93043
Autom. Remote Control 71, No. 8, 1562-1577 (2010); translation from Avtom. Telemekh. 2010, No. 8, 62-78 (2010).
Summary: A new adaptive algorithm for compensation of parametrically uncertain biased harmonic disturbances is proposed. In contrast to the existing counterparts, consideration is given to the case of disturbance compensation where the relative degree of the plant model may be anyone, only the controlled output is measured, and the control channel is characterized by a delay.

MSC:
93C40 Adaptive control/observation systems
93B40 Computational methods in systems theory (MSC2010)
93C05 Linear systems in control theory
93C73 Perturbations in control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bobtsov, A.A. and Kremlev, A.S., Adaptive Compensation of Biased Sinusoidal Disturbances with Unknown Frequency, Proc. 16th IFAC World Congr., Prague, 2005. · Zbl 1126.93426
[2] Bodson, M. and Douglas, S.C., Adaptive Algorithms for fhe Rejection of Periodic Disturbances with Unknown Frequencies, Automatica, 1997, vol. 33, pp. 2213–2221. · Zbl 0900.93146 · doi:10.1016/S0005-1098(97)00149-0
[3] Marino, R., Santosuosso, G.L., and Tomei, P., Robust Adaptive Compensation of Biased Sinusoidal Disturbances with Unknown Frequency, Automatica, 2003, vol. 39, pp. 1755–1761. · Zbl 1054.93031 · doi:10.1016/S0005-1098(03)00170-5
[4] Marino, R., Santosuosso, G.L., and Tomei, P., Regulation of Linear Systems with Unknown Additive Sinusoidal Sensor Disturbances, Proc. 17th IFAC World Congr., Seoul, 2008, pp. 4102–4107. · Zbl 1360.93559
[5] Marino, R. and Tomei, P., Adaptive Regulator for Uncertain Linear Minimum Phase Systems with Unknown Undermodeled Exosystems Regulation of Linear Systems with Unknown Additive Sinusoidal Sensor Disturbances, Proc. 17th IFAC World Congr., Seoul, 2008, pp. 11293–11298.
[6] Marino, R. and Tomei, P., Adaptive Regulation of Uncertain Linear Minimum Phase Systems with Unknown Exosystems, Proc. IEEE 45th Conf. Decision Control., San Diego, 2006, pp. 1099–1104.
[7] Nikiforov, V.O., Adaptive Servocompensation of Input Disturbances, Proc. 13th IFAC World Congr., San-Francisco, 1996, pp. 175–180.
[8] Nikiforov, V.O., Adaptive Non-linear Tracking with Complete Compensation of Unknown Disturbances, Eur. J. Control, 1998, vol. 4, no. 2, pp. 132–139. · Zbl 1047.93550 · doi:10.1016/S0947-3580(98)70107-4
[9] Nikiforov, V.O., Adaptive Servocompensation of External Unknown Disturbances, Proc. 14th IFAC World Congr., Beijing, 1999, pp. 283–289.
[10] Aranovskii, S.V., Bobtsov, A.A., Grigor’ev, V.V., and Pyrkin, A.A., Adaptive Observer for Compensation of Polyharmonic Disturbance of the Output Variable of a Nonlinear Control Plant, Tr. 5-i nauch. konf. ”Upravlenie i informatsionnye tekhnologii” (Proc. Fifth Conf. ”Control and Information Technologies”), St. Petersburg, 2008.
[11] Aranovskii, S.V., Bobtsov, A.A., and Pyrkin, A.A., Adaptive Observer of an Unknown Sinusoidal Output Disturbance for Linear Plants, Autom. Remote Control, 2009, no. 11, pp. 1862–1870. · Zbl 1187.93014
[12] Bobtsov, A.A., Output Control Algorithm with the Compensation of Biased Harmonic Disturbances, Autom. Remote Control, 2008, no. 8, pp. 1289–1296. · Zbl 1156.93027
[13] Bobtsov, A.A., Output Control Algorithm with Compensation of the Biased Harmonic Disturbance, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, no. 1, pp. 45–48. · Zbl 1217.93080
[14] Bobtsov, A.A. and Pyrkin, A.A., Compensation of the Harmonic Disturbance under Control Delay, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2008, no. 4, pp. 19–23. · Zbl 1178.93095
[15] Bobtsov, A.A. and Pyrkin, A.A., Compensation of Unknown Sinusoidal Disturbances in Linear Plants of Arbitrary Relative Degree, Autom. Remote Control, 2009, no. 3, pp. 449–456. · Zbl 1163.93361
[16] Nikiforov, V.O., Adaptivnoe i robastnoe upravlenie s kompensatsiei vozmushchenii (Adaptive and Robust Control with Disturbance Compensation), St. Petersburg: Nauka, 2003.
[17] Hou, M., Amplitude and Frequency Estimator of a Sinusoid, IEEE Trans. Automat. Control, 2005, vol. 50, pp. 855–858. · Zbl 1365.93485 · doi:10.1109/TAC.2005.849244
[18] Xia, X., Global Frequency Estimation Using Adaptive Identifiers, IEEE Trans. Automat. Control, 2002, vol. 47, pp. 1188–1193. · Zbl 1364.93789 · doi:10.1109/TAC.2002.800670
[19] Khalil, H.K., Nonlinear Systems, Upper Saddle River: Prentice Hall, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.